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About the Workshop

The Los Alamos National Laboratory Computational Physics Workshop is intended to educate
select students in problems of computational physics, while exciting them about problems of par-
ticular interest to LANL. The long term goal is to train a cadre of future researchers with strong
connections to LANL and both interest and expertise in the problems LANL faces.

This year’s workshop ran from June 10 – August 16, 2019 and once again attracted a phe-
nomenal group of students, whose work is presented in the following pages. The students worked
with LANL staff mentors in teams of two, doing original research. In addition, they attended a
lecture series focusing on both the basics and the cutting edge challenges of computational physics
(Table 1). A new item this year was a modification to our Meet LANL series of brown-bag lunch
session, moving from focusing on individual researchers to panel presentations from the different
groups within XCP.

As always, the mentors were drawn from across disciplines and divisions. Projects looked
physics ranging from quantum interactions, up to solar system development. We hope you find
them informative.
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Jordan Laune and Cody Meng

Mentors
Hui Li and Shengtai Li

Chapter Abstract

Observed protoplanetary disks exhibit complex dust substructures, including rings, gaps, and
asymmetries. One proposed explanation of such structures is that planets embedded within the
disk interact with the disk through tidal forces, opening up a gap in the gas and forming dust rings.
Recent simulations have demonstrated that a single planet can create multiple rings of dust, with
at least one ring interior to the planet’s orbit and one ring exterior. However, due to dust coagu-
lation, dust grains interior to the planet can grow to large sizes very quickly, which can then be
removed due to radial drift towards the star. On the other hand, the gap opening process of an
embedded protoplanet depends on both the planet mass and the aspect ratio of the disk. In this Let-
ter, we present the results of hydrodynamical simulations of protoplanetary disks which include a
full treatment of dust coagulation. By varying the disk’s thickness and the planet mass, we find
that if the planet does not open a gap quickly enough, the formation of an inner ring is impeded
due to coagulation and subsequent radial drift. We also find several differences between a full
treatment of coagulation and single dust species simulations. The rings of dust with coagulation
included end up much narrower than those without, and a “buildup” ring of sub-mm sized parti-
cles appears in the dust emission outside of the dust rings immediately surrounding the planet gap.
Another proposed method of ring formation in protoplanetary disks is the accumulation of gas in
azimuthally symmetric “dead zones”, or low-ionization regions where the effective viscosity of the
gas is reduced, which also operate as efficient radial dust traps. We utilize 1-D hydrodynamic dead
zone simulations with coagulation effects to determine relations between dust sizes, densities, and
opacities in outer viscosity dead zone rings.
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CHAPTER 1. GAS-DUST INTERACTIONS

1.1 Introduction

Protoplanetary disks are flat, rotating disks of gas and dust which are found around nearly all new-
born stars. Since they contain the necessary building blocks of formation, they are thought to be the
birthplace of planets. We may observe protoplanetary disk systems with large, ground-based radio
interferometers such as the Atacama Large Millimeter/submillimeter Array (ALMA). The high-
resolution observations in the recent DSHARP campaign have revealed some of the most stunning
structures yet, with many of these systems exhibiting complex gaps, rings, and asymmetries in the
dust emission (Isella et al., 2018; Andrews et al., 2018; Macias et al., 2019). Several theoretical
mechanisms have been proposed for the formation of these features.

One explanation is that pre-existing planets interact tidally with the disk, opening gaps and
trapping dust into pressure bumps at the edges. Recently, Dong et al. (2017) found that a single
super-Earth sized planet can even open up several rings and gaps within its own orbit. The dust
emission may therefore give us valuable clues about the planet’s mass and location in the disk, as
well as other disk parameters such as the thickness.

In a protoplanetary disk, the gas is supported by a negative pressure gradient in the radial
direction, which causes the gas to orbit slightly slower than the Keplerian velocity. The dust, on
the other hand, feels no such pressure gradient and moves at a Keplerian speed along its orbit.
This causes the dust to feel a “headwind” which removes angular momentum and causes the dust
to drift inwards. Hence, a planet opening a gap must compete against radial drift in order to trap
dust before it accretes onto the central star. Large dust grains drift more quickly due to increased
drag from the gas. In the next section, we present evidence that including dust coagulation and
size growth may impede ring formation inside of the planet’s orbit by making radial drift more
efficient.

Another serious candidate for ring formation in protoplanetary disks is the presence of a viscos-
ity dead zone, an annular region of reduced effective viscosity that produces the pressure gradient
effects necessary to prevent radial dust drift. In Section 1.3, we investigate dust grain growth and
ring optical depths in simulated viscosity dead zone rings.

1.2 Embedded Planets

1.2.1 Background

In a protoplanetary disk, small µm-sized particles stay well-coupled to the gas in the disk and do not
feel a strong gas headwind. Large particles, on the other hand, are free to move at the Keplerian
velocity and feel a strong gas headwind from the slower moving gas. The gas removes angular
momentum from large particles much quicker than the small particles, and large particles are lost
to radial drift rather efficiently. By increasing particle sizes, dust coagulation thereby accelerates
dust radial drift and further challenges planetary ring formation.

Several authors have worked out expressions for radial drift timescales (Whipple, 1972; Wei-
denschilling, 1977; Brauer et al., 2008; Birnstiel et al., 2012). We will use the equations from
Birnstiel et al. (2012) in order to formulate the radial drift timescale in terms of the Stokes number
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1.2. EMBEDDED PLANETS

of the particle,
St =

πaρp
2Σg

. (1.1)

where a is the dust particle size, ρp its internal density, and Σg the gas density. The radial drift
velocity is then given by

vr =
1

St + St−1

1

2πΣg

dP

dr
, (1.2)

with P being the vertically-integrated gas pressure and τdrift = r/vr the radial drift timescale. The
drift velocity is largest when St = 1, which occurs for larger particles. Hence, if dust is allowed
to coagulate and grow in size, the problem of radial drift is accelerated and ring formation may be
impeded.

Due to the computational expense of calculating full dust coagulation, many computational
studies neglect this effect and use either single-species or multi-species approaches with pre-
specified distributions. However, as dust grains grow, their Stokes numbers and radial drift veloc-
ities increase according to Equation 1.1 and Equation 1.2. Simulations which neglect coagulation
may therefore underestimate the effects of radial drift, especially when considering the regions
within the planet’s orbit close to the star. Unless there is a feature blocking radial drift, large dust
grains are typically lost as they travel inwards and accrete onto the star. Hence, including dust
coagulation may change the outcome of ring formation dramatically.

Turbulent velocities are the main source of collisions for the dust grains, and these velocities
also grow with the Stokes number. Once turbulent velocities exceed the fragmentation velocities of
the particles, large grain growth will halt as the particles fragment into smaller pieces. For Stokes
numbers ≤ 1, we have the following maximum size to which dust particles grow, after which
growth trails off quickly (Li et al., 2019; Birnstiel et al., 2012; Pinilla et al., 2012):

amax =
4Σg

3παvisρp

v2
f

c2
s

, (1.3)

where αvis is the viscosity parameter for coagulation, vf is the fragmentation velocity for the dust,
and cs is the sound speed in the gas. This fragmentation limit on particle size is strict. As such, the
bulk of the dust mass does not reach this size. In Birnstiel et al. (2012), the authors calculate the
flux-averaged size to be aflux = 0.185× amax. We will use aflux as a lower bound on the dust sizes
to estimate drift and coagulation timescales.

Dust found in the interstellar medium (ISM), from which protoplanetary disks form, is typically
near a micron in size. Before dust grains reach the fragmentation-limited size amax, they take some
time to grow. There is much uncertainty about the coagulation timescale in protoplanetary disks
(Brauer et al., 2007). We adopt the approach of Birnstiel et al. (2012), which derives the doubling
timescale as approximately τdouble ≈ 1/2πε0, where ε0 is the initial dust to gas ratio in the disk
(Brauer et al. (2008), Ormel and Cuzzi (2007), Youdin and Lithwick (2007)). The growth timescale
to the maximum fragmentation size aamax, then, is given by

τcoag = τdouble ln

(
amax

a0

)
, (1.4)

where a0 is the initial dust size, typically assumed to be 1 µm from the ISM.
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By equating τdrift = τcoag, Birnstiel et al. (2012) derives the upper limit on dust grain size due
to losses from radial drift to be

adrift = 0.55× 2Σdv
2
k

πρpc2
s

∣∣∣∣d lnP

d ln r

∣∣∣∣−1

, (1.5)

where Σd is the dust density and vk is the Keplerian velocity. The 0.55 prefactor comes from
numerical calibration by simulations.

Independent of the dust evolution, the gravitational field of an embedded planet may open up
a gap in the gas disk, forming at least two pressure maxima on either edge of the gap (Dong et al.,
2017). In order to estimate the gap-opening timescale of the planet, we adopt the equation from
Lin and Papaloizou (1986), which neglects the effects of viscous stress:

τgap ≈
1

2π

(
M∗
Mp

)2

(2H0)5 . (1.6)

In this equation, H0 is the aspect ratio of the disk at the planet’s radius and Mp is the mass of the
planet. The viscous timescale is typically much longer than the gap-opening timescale, especially
for the nearly inviscid disks in this work, and so for the purposes of our study it is safe to ignore
viscous stress.

In the inner regions of a protoplanetary disk, the dust coagulation and subsequent loss due
radial drift competes with the gap forming process of an embedded planet. In order to trap dust
in a ring, there must be a pressure maximum in the gas, which evolves as the planet carves out
a gap in the disk over a time τcoag. Due to coagulation, dust grains in the inner disk grow to
their fragmentation-limited size amax over a time τcoag. After reaching sizes between ∼ aflux and
amax, the large grains drift inwards over a time τdrift if no pressure trap has formed. Hence, if
τgap > τcoag + τdrift, we do not expect a ring of dust to form inside the planet’s orbit, and vice
versa. If the dust grains were to remain at 1 µm, as in the ISM, they would stay well-coupled to
the gas and we would typically have τdrift >> τgap. An interior dust ring would always form in
this case. From Equation 1.6, we see that the gap opening timescale is dependent of both Mp and
H0. In this report, we will explore the Mp and H0 parameter space in order to discern their effects
on ring formation whenever full dust coagulation is included in the disk’s evolution.

1.2.2 Methods
Hydrodynamic model

In this study, we perform 2-D hydrodynamic simulations coupled with a full coagulation treatment
of the dust size evolution in a model protoplanetary disk. Using the hydrodynamic data, we use
post-processed synthetic dust continuum images to analyze the observational signatures of dust
coagulation.

Hydrodynamic simulations of the protoplanetary disks were performed with LA-COMPASS
(Los Alamos COMPutational Astrophysics Simulation Suite), a multi-fluid code which includes
dust, gas, and planet dynamics. The gas and dust dynamics equations are as in Fu et al. (2014),
and we solve them on a grid of resolution nr × nφ = 1024 × 1024. For calculation of the dust
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1.2. EMBEDDED PLANETS

Stokes number, we have set the internal density of the dust to ρd = 1.2 g/cm3. We include dust
feedback in our simulations, which is the back reaction of the dust acting on the gas. We choose
an isothermal sound speed profile of

cs
vk

=
H

r
= H0

(
r

rp

)1/4

, (1.7)

where H is the scale height of the gas and rp is the planet’s radius, which we set to 30 au. At
this radius, 1000 orbits corresponds to approximately 150,000 years. This profile corresponds to
a locally isothermal temperature profile which scales as T ∝ r−1/2. We note that Miranda and
Rafikov (2019) recently showed that an adiabatic equation of state with exponent γ = 1.001 can
have an effect on the gap opening process for planets in my parameter space near and below the
thermal mass of the star (Goodman and Rafikov, 2001).

For all of our simulations, the star has a mass of 1 M�, and the viscosity parameter is α =
5× 10−5 for the viscous force in the α–prescription from Shakura (1973). Our simulation domain
extends from 12 au to 480 au. The disk is initialized with an axisymmetric gas profile of

Σg(r) = Σ0

(
r

rc

)−β
exp

(
−
(
r

rc

)2−β
)
, (1.8)

with β = 1.0, Σ0 = 12.3 g/cm2, and rc = 4rp. The dust is set with an initial dust-to-gas ratio of
1%. These parameters lead to a total disk mass of around 38 MJ . The planet masses vary between
10 M⊕ and 50 M⊕, and H0 varies between 0.03 and 0.07. We choose Mp and H0 combinations
which lie in the vicinity of the critical region where τgap ≈ τcoag + τdrift. More information about
the specific run parameters will be given below. In order to avoid numerical instabilities, we grow
the planet over a period of 10 orbits at the beginning of the simulation.

Coagulation model

The coagulation scheme is as in Li et al. (2019) and Dra̧żkowska et al. (in prep.), using the the
model of Birnstiel et al. (2010). In order to simulate dust dynamics and coagulation, we use 151
species of dust logarithmically spaced between 1 µm–sized dust found in the ISM up to 1 m-
sized boulders, which gives us 25 species per size decade. The dust is initialized at a size of 1
µm. For single species runs, the coagulation unit is turned off and we have a single dust species
with size 0.02 cm. LA-COMPASS includes a fluid for each species of dust, and to determine the
evolution of the dust sizes we explicitly integrate the Smoluchowski equation in each spatial cell
(Smoluchowski, 1916). Turbulence and radial drift are considered as sources of relative velocities
between the dust particles. The turbulence for dust is governed by a separate viscosity parameter
αvis, for which we choose a value of 10−3. Collisions above 10 m/s result in fragmentation, and
those below result in coagulation. The fragmentation outcome results in a distribution according to
a power law in the mass m of the fragments, n(m)dm ∝ m−1.83dm (Brauer et al., 2008; Birnstiel
et al., 2010).

We handle the dust coagulation in each cell using an operator splitting approach alongside the
gas and dust hydrodynamics. The dust coagulation model is computationally expensive compared
to the hydrodynamical calculations, so we implement a sub-stepping routine and calculate the
coagulation outcomes every 50 timesteps.
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CHAPTER 1. GAS-DUST INTERACTIONS

Radiative transfer

In order to create synthetic dust emission images of our disk models in LA-COMPASS, we utilize
the radiative transfer code RADMC-3D of Dullemond et al. (2012). The dust density from the
hydrodynamic simulations was used as input into the ray-tracing algorithm of RADMC-3D, but
first it had to be transferred from the 2-D profile into a full 3-D model for RADMC-3D. We assume
the three dimensional dust density ρd is vertically distributed along the z–direction according to a
Gaussian profile as

ρd =
Σd√
2πHd

exp

(
− z2

2H2
d

)
, (1.9)

where Hd is the scale height of the dust. We use the following relation from Birnstiel et al. (2010)
to define the dust scale height:

Hd = H min

(
1,

√
αvis

min(St, 1/2)(1 + St2)

)
. (1.10)

For RADMC-3D, we reduce the grid size in the r and φ dimensions to nr×nθ×nφ = 300×40×100.
The algorithm used to downsample and extrapolate the dust density recovered over 94% of the
total dust mass for all cases. In order to calculate the dust temperature for emission, we utilized the
thermal photon Monte Carlo capabilities of RADMC-3D with 500 million photons. The grain-size
dependent dust opacity is adopted from Isella et al. (2009) and Ricci et al. (2010). The star is
assumed to have a blackbody temperature of 4200 K.

For all of the disk models, we set the observation distance to 100 pc and simulated the dust
emission at zero inclination at 1000 orbits. We imaged the disk models at 890 (ALMA Band 7),
1330 (ALMA Band 6), and 3000 µm (ALMA Band 3). The emission map is convolved with a
Gaussian beam with FWHM 35 mas in order to simulate observation of the disk, which is compa-
rable to those achieved with the recent DSHARP survey (Andrews et al., 2018).

1.2.3 Results
Characteristic Scales

In order to illustrate the effects of planet mass and aspect ratio on the formation of rings interior
to the planet’s orbit, we will study fiducial models with parameters Mp = 24 M⊕ and H0 = 0.05,
Mp = 24 and M⊕ H0 = 0.04, and Mp = 40 and M⊕ H0 = 0.05. We will refer to them as
M24H005, M24H004, and M40H005, respectively. Additionally, for each of these models we
ran a separate single species simulation in order to analyze how coagulation affects ring formation.
First, we will use the model M24H005 to verify the analytical formulas for the characteristic scales
given in the introduction.

In Figure 1.1, we have plotted the average density of the dust species with size aflux in the inner
disk between 18 and 27 au. The rise in density occurs at a time well-predicted by τcoag. At the peak
of the average density in this region, at 220 orbits, we have also plotted the dust size distribution at
21 au. We find the peak between aflux and amax.

On the bottom of Figure 1.1, we have the radial dust size distributions taken at 220 orbits and
1000 orbits (the last frame of our simulation). Along with the size distributions, we have plotted
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1.2. EMBEDDED PLANETS

Figure 1.1: Plots in this figure use data from M24H005. (a) We have averaged the dust species
density corresponding to the size aflux in the annular region between 18-27 au over the entire
duration of the simulation. (b) The peak of the average dust density in the region between 18-27 au
occurs at 220 orbits. At this orbit, we have taken the grain size distribution at 21 au. (c) Here
we have an azimuthally averaged profile of the dust distribution again at 220 orbits. Over the dust
distribution, we have plotted the predicted amax, aflux, and adrift particles sizes at each value of r.
(d) Same as (c), but at 1000 orbits.

amax, aflux, and adrift. At 220 orbits, a bulk of the dust in the inner disk lies between aflux and amax.
At 1000 orbits, the particles have reached amax in the rings, and they fit the shape of adrift well in
the gaps. The edge at adrift is less sharp than amax since the radial drift growth limit is not as strict
as the fragmentation limit.

Full coagulation

In Figure 1.2, we have plotted the dust density for each of the fiducial models with full coagulation.
In M24H005, τgap > τcoag + τdrift, and we see that the innermost ring is very weak. However,
increasing the planet mass or decreasing H0 lowers τgap, and we see that both M40H005 and
M24H004 form strong inner rings.

The azimuthally averaged dust density in the bottom right of Figure 1.2 indicates the strength of
the rings formed in each run. The outer rings are comparable for the three models, while the inner
ring for M24H005 is much smaller than the other two. In order to characterize ring formation, we
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Figure 1.2: Here we have 2-D dust density distributions and 1-D azimuthally averaged dust radial
profiles for the three fiducial runs. The green cross denotes the location of the planet. All of these
were taken at 1000 orbits. (a) Dust density plot for M24H005. We see the dust ring inside the
planet’s orbits is greatly diminished compared to the others. (b) Same as (a), but for M40H005.
Increasing the planet mass has created a much stronger ring interior to the planet. (c) Same as (b),
but for for M24H004. Decreasing the aspect ratio of the disk similarly creates a much stronger
inner ring. (d) Azimuthally averaged dust radial profiles for all three runs. The rings have shifted
outwards for the larger planet mass of 40 M⊕ and inwards for the lower aspect ratio H0 = 0.04.

use the value of the peak density within the inner ring divided by the peak density within the outer
ring. This peak density ratio is about 0.07 for the non-ring forming case M24H005, while it is 0.6
and 0.8 for M24H004 and M24H004, respectively.

Single species

The dust profiles for the single species runs are presented in Figure 1.3. For all three runs, both
an inner ring and an outer ring form. For the two runs with Mp = 24 M⊕, H0 = 0.04 and
Mp = 40 M⊕, H0 = 0.05, we see an additional ring form inside of the planet’s gap, similar to the
double ring results in Dong et al. (2017). The interior ring forms for the single species run with
Mp = 24 M⊕, H0 = 0.05 since the dust grains cannot grow and then drift inwards as quickly as
with coagulation included.

The dust rings in Figure 1.3 are also much wider than their full coagulation model counter-
parts. With coagulation included, dust grains are free to grow to size amax. With Stokes num-
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Figure 1.3: (a) Azimuthally averaged radial dust profiles for all three single species runs at 1000
orbits. The profile from M24H005 plotted over the single species run to demonstrate the effects
from coagulation. (b) 1330 µm emission from the single species run with a 24 M⊕ planet and
H0 = 0.05 at 1000 orbits. The green cross and black star designate the planet’s location and the
star’s location, respectively. (c) Same as (b) but for the run M24H005.

bers close to 1, these larger particles are less well-coupled to the gas, as opposed to the smaller
0.02 cm–sized particles in the single species run. Hence, the larger particles in the coagulation
runs may concentrate closer to the gas pressure maximum in the ring.

In the dust emission plots, M24H005 clearly exhibits four distinct rings. Three immediately
surround the planet’s orbit, and a fourth faint ring is located outside of these planetary gap rings.
The innermost ring is much fainter than ring directly outside the planet due to the diminished dust
density in this region. The outermost ring is from a buildup of sub-mm sized dust particles which
have grown from the µm-sized grains in the outer disk but have not yet reached larger sizes at
which they drift to the planet very quickly. As dust grains grow past 1 mm near this ring, they drift
inwards and are quickly lost. This creates the gap inside the “buildup” ring, since radial drift speed
is nonlinear.

The single species run has a much brighter inner disk than M24H005 because the dust cannot
grow in size and then drift quickly. The dust ring emission immediately within the planet’s orbit
blends in with emission from dust very close to the inner boundary and is obscured, contrary to
the well-resolved but faint innermost ring in M24H005. There is a single ring of emission outside
the planet’s orbit with a shallow gradient outwards into the dim outer regions of the disk. The
outermost ring of “buildup” sub-mm sized particles is not present because the dust is fixed to 0.2
mm.

Varying aspect ratio and planet mass

Using the same method of comparing peak density values between the inner and outer rings as
above, we have compiled the ratios for all of our simulations after 1000 orbits into Figure 1.4.

We find good agreement between analytical predictions and our simulation results. We used
aflux and amax as lower and upper dust size bounds in our calculation for the critical band where
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Figure 1.4: Here we have compiled the ratio between the outer ring’s peak density and the inner
ring’s peak density for all full-coagulation runs performed for this report. The gray band is the
region where τgap ≈ τcoag + τdrift. The blue dashed line was calculated using the upper size limit
amax, and the red dashed line was calculated using the lower size limit aflux.

τgap ≈ τcoag + τdrift. Inside and close to this critical region, we see a gradient between the two
regimes, where the rings partially exist but are weaker than the region in the bottom right of the
parameter space. If the planet gap opens in approximately the same amount of time as the dust
coagulates and drifts inwards, we still expect some dust to be trapped in the inner ring.

Further from this line, in the regime with no inner rings at the top left, we see very low peak
density ratios. Higher values of H0 and lower planet masses increase the gap opening timescale,
and so the gap does not form quickly enough to capture dust. Conversely, as the parameters move
towards higher mass planets and lower aspect ratios in the bottom right, we see higher peak density
ratios ≥ 0.5, since the planets open gaps more quickly.

Synthetic dust emission

The dust emission maps for our fiducial coagulation runs have been plotted in Figure 1.5, for
wavelengths of 890, 1330, and 3000 µm. In all three wavelengths, the innermost ring of M24H005
is much fainter than that of M24H004 or M40H005. The “buildup” outermost dust ring is present
in all three wavelengths, but it is relatively strongest in 890 µm.
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Figure 1.5: Simulated dust emission for wavelengths of 890 (ALMA Band 7), 1330 (ALMA Band
6), and 3000 µm (ALMA Band 3) for all three fiducial full-coagulation models. The wavelengths
vary along the vertical axis and the models vary along the horizontal axis. The intensity colorbars
are given at the right of each row. The green cross and black star indicate the planet and star
locations, as in Figure 1.3.

1.2.4 Summary and Discussion

In this report, we have conducted hydrodynamic and coagulation simulations of protoplanetary
disks spanning planet masses from 10 to 50 M⊕ and aspect ratios between 0.03 and 0.07 in order
to test our analytical predictions for the formation of a dust ring interior to the planet’s orbit. The
results of our simulations matched our predictions well, and we found that dust coagulation and
subsequent radial drift impedes the inner dust ring from forming fully for high aspect ratios and
low planet masses, when τgap > τcoag + τdrift. We post processed our hydrodynamic data using
a ray-tracing Monte Carlo radiative transfer code and found that the inner rings were diminished
in 890, 1330, and 3000 µm wavelengths. The dust distributions in simulations which included
coagulation differed from equivalent single species runs in three major ways:

1. The inner dust ring was greatly diminished for runs with high planet masses and low aspect
ratios.

2. The dust rings were much thinner.
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3. There was an additional “buildup” ring outside of the rings immediately surrounding the
planet gap.

Our simulations neglected disk self-gravity (DSG), which can play an important role in the gap-
opening process of a disk. In particular, for some initial gas surface density values, including DSG
may boost the gap-opening process and decrease τgap (Zhang et al., 2014). This would effectively
move the critical band in Figure 1.4 upwards. In preliminary LA-COMPASS simulations which
include DSG, we do observe this effect, as τgap decreases and a stronger inner ring forms for a run
equivalent to M24H005. However, quantifying this effect would take many DSG runs. Since DSG
greatly adds to the computational expense of each run, we leave this endeavor to a future study.

Dust emission is one of the best tools available for observing real protoplanetary disks. This
report provides simulation evidence that dust coagulation and tidal forces from embedded planets
compete against each other in the ring formation process. Relative ring brightnesses may provide
valuable inferences about the planet mass, aspect ratio, and coagulation dynamics in a protoplan-
etary disk system. Furthermore, we have demonstrated that dust coagulation cannot be neglected
when considering the formation and sustenance of dust substructures.

1.3 Dust Growth Properties in Simulated Viscosity Dead Zone
Rings

Ring and Gap substructures in Protoplanetary Disks are also thought to be formed by Viscosity
Dead Zones, which are lowly-ionized annular regions in the disk with low effective viscosities.
This enables radial gas pressure buildups to form in the disk, which can efficiently trap dust at
pressure maxima. In this study, we investigate relations between gas and dust surface densities,
maximum dust sizes, Optical Depths (at wavelengths of 890 (ALMA Band 7), 1330 (ALMA Band
6), and 3000 µm (ALMA Band 3)) as we vary initial gas and dust surface densities as well as
fragmentation velocities for sample rings generated by viscosity dead zones. We utilize 1-D multi-
fluid hydrodynamic simulations with full 151-species dust coagulation to simulate ring formation
via viscosity dead zones. We then use dust continuum image postprocessing to determine optical
depths and examine the observational signatures of dust coagulation.

1.3.1 Background
Ring Formation at Gas Pressure Maxima

In order to maintain a low-eccentricity orbit around the star, protoplanetary ring dust must travel
at a Keplerian velocity vK =

√
GM/r, the velocity at which the centripetal force due to the dust’s

angular velocity is equal to the gravitational force due to the star’s mass. However, gas can be
supported by a pressure gradient, so for gas whose pressure decreases with radius (as is true of gas
in protoplanetary disks), a lower (sub-Keplerian) velocity is required to maintain orbit (Fu et al.,
2014).

Small dust particles are well-coupled to the gas and are carried around the disk via the gas
motion. These dust particles can collide and stick together due to Van der Waals and electrostatic
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forces. As these dust grains coagulate and grow, they become increasingly decoupled to the gas,
meaning that they must travel at the Keplerian velocity to maintain orbit. Subsequently, the grains
experience a headwind from motion through the sub-Keplerian gas, and they drift radially into the
star as drag saps their angular momentum. These large dust particles quickly drift into the star on
timescales as short as 100 years for meter-sized dust grains. This issue, known as the “meter-sized
problem”, poses a significant obstacle to our current models for planet formation, which require
dust grains to coagulate to planetesimal sizes without first drifting into the star.

At a pressure maximum, however, the gas pressure gradient is zero, which allows the gas
to orbit at Keplerian velocities and prevent dust drift. Exterior to the maximum, the negative
pressure gradient induces drag and allows dust to drift inwards towards the maximum. Interior
to the maximum, the positive gradient induces gas motion at super-Keplerian speeds, pushing the
dust outwards also towards the maximum. Thus, radial gas pressure maxima serve as effective dust
traps that prevent dust from drifting into the star.

Viscosity Dead Zones

Effective viscosities in protoplanetary disks are typically charactarized by turbulent viscosities,
which exist due to the Magneto-Rotational Instability (MRI). The MRI is dependent on the ion-
ized material in the disk, so in disk regions shielded from ionizing solar radiation, the MRI is
suppressed, reducing the region’s effective viscosity. We call such regions Viscosity Dead Zones.

Gas in protoplanetary disk systems experience viscous forces due to shear stresses in the disk.
These viscous forces sap the gas of angular momentum, and induce radial drifting of the gas at a
rate approximately proportional to the effective viscosity (Shakura, 1973). From the classical fluid
continuity and momentum equations, the radial gas drift velocity can be approximated as (Li et al.,
2019; Armitage, 2015):

vr,g ' −
3

Σg

√
r

∂

∂r
(Σgνg

√
r) (1.11)

gas surface density Σg, radius r, and effective viscosity νg.
The decreased effective viscosity in viscosity dead zones creates gas pressure maxima by re-

ducing the gas’ radial drift velocity, allowing gas to build up in the region. These maxima serve
as effective dust traps, collecting dust drifting towards the star from outer regions of the disk.
Through this process, annular viscosity dead zones can efficiently create dust rings similar to those
we observe with mm and sub-mm observations in protoplanetary disks. We show a side-by-side
comparison of emission from HD169142, a protoplanetary disk imaged by ALMA, with our own
viscosity dead zone simulation in Figure 1.6. We include the simulation viscosity, gas density, and
dust density profiles in Figure 1.7.
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Figure 1.6: Left: 1.3 mm ALMA observations of protoplanetary disk system HD169142 from
Fedele, D. et al. (2017). Right: 1.3 mm emission from a 1-D viscosity dead zone simulation with
dust coagulation effects using LA-COMPASS. The white ellipses represent Gaussian Beam sizes.
We see that our 1-D dead zone simulations can produce ring structures similar to those of observed
systems.

Figure 1.7: Viscosity (Blue), Gas Density (Black), and Dust Density (Red) radial profiles in the 1-
D dead zone simulation shown above in Figure 1.6. We can observe the gas pressure bump created
by the dead zone as well as the dust ring located at the gas pressure maximum.
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Dust Growth Barriers

The two principal barriers to uninhibited dust growth are radial drift and fragmentation collisions.
Radial pressure maxima formed by viscosity dead zones can effectively suppress radial drift ef-
fects, forming a ring, but fragmentation remains a dominant barrier to runaway dust growth. Frag-
mentation occurs due to dust particle collisions with sufficient relative turbulent and radial drift
velocities. By equating twice the turbulent velocity of dust grains of size a with a threshold frag-
mentation velocity, we can estimate the maximum dust size of grains in the disk (Li et al., 2019;
Birnstiel et al., 2012; Pinilla et al., 2012).

amax =
4Σg

3παρs

v2
f

c2
s

(1.12)

where α is the coagulation viscosity, vf is the fragmentation velocity limit, and cs is the sound
speed.

1.3.2 Numerical Methods
Hydrodynamic model

As previously described in section 1.2.2, these hydrodynamic simulations were performed with
LA-COMPASS, a multi-fluid code modeling gas and dust dynamics using the gas and dust equa-
tions as described in Fu et al. (2014) and Armitage (2015). We treat the gas and each dust species
as individual fluids, for a total of 152 fluid species. We solve the system on a logarithmically
spaced 1-D grid of resolution nr = 1024. We use a locally isothermal sound speed cs such that:

cs
vK

= H0

(
r

r0

) 1
4

(1.13)

where vK is the local Keplerian velocity, r0 = 5 au, and H0 = 0.033, an aspect ratio based on
estimates of HD169142 from Fedele, D. et al. (2017).
The initial gas surface density profile Σg(r) is set as follows:

Σg(r) = Σ0

(
r

rc

)−γ
exp

[
−
(
r

rc

)2−γ
]

(1.14)

where rc = 100AU and γ = 1, corresponding to a disk temperature profile of T ∝ r−
1
2 .

The Stokes number Sti of a particular dust species i is defined as:

Sti =
πρsa

i

2Σg

(1.15)

where ρs is the solid density of the dust grains, ai is the size of the dust species, and Σg is the local
gas surface density. The radial dust drift velocity can then be estimated as:

vr,d =
St−1vr,g − ηvK

St−1 + St
(1.16)
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where η = − c2s
v2
K

d lnP
d ln r

and vr,g is the gas velocity approximated in equation 1.11.
For all of the following simulations (with the exception of those shown in 1.6), we use a star

with a mass of 1 M� and a dust-gas mass ratio of 0.01. We adopt the Shakura-Sunyaev α-viscosity
presciption νg = αcshg, with hg being the gas disk height and α being the dimensionless viscosity
parameter (Shakura, 1973). We use α(r) = α0 = 10−2 for most regions in the disk, assuming a
rectangular gap with a reduced viscosity αgap = 1.7 × 10−3 centered at 70 AU with a gap width
of 5 AU, as used in the fiducial model by Li et al. (2019). We simulate an outer dead zone ring
to reduce the necessary time resolution compared to that required by an inner ring. We use a
disk inner radius of 20 AU and outer radius of 240 AU. We ran each simulation for 2.5 million
timesteps up to a disk age of 1.7 Myrs, a typical age for a protoplanetary disk (Li et al., 2019).

Coagulation Model

In this study, we use the coagulation scheme as in Li et al. (2019) as decribed in section 1.2.2. We
use 151 dust species logarithmically spaced between 1 µm and 1 m in size, initially distributed as
a delta function at 1 µm. We use the Smoluchowski algorithm (Smoluchowski, 1916) to simulate
dust growth and fragmentation in each spatial cell. Collisions above a fragmentation velocity
parameter, which we vary between 1-10 m/s, result in fragmentation, whereas collisions below
the fragmentation velocity result in coagulation. Fragmentation results in a fragment distribution
according to a power law in the mass m of the fragments, n(m)dm ∝ m−1.83dm (Brauer et al.,
2007; Birnstiel et al., 2010). Due to the high computational cost of simulating dust coagulation,
we calculate the coagulation outcomes every 50 hydrodynamical timesteps. We show typical dust
size and density profiles, along with drift and fragmentation dust growth barriers, in Figures 1.8
and 1.9.
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Figure 1.8: Radial Dust Size and Density Profiles for a 1-D hydrodynamic viscosity dead zone
simulation using LA-COMPASS. We overlay the drift barrier (magenta), the fragmentation barrier
(red), and the size at which St = 1, the limit at which our theoretical models break down. We see
that fragmentation is the dominant limiting factor to dust size in the ring.
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Figure 1.9: Dust Size vs Dust Density profile at two radii, represented by the vertical grey and
black dotted lines in Figure 1.8, both within and immediately outside the ring. We see significant
dust mass accumulation in the ring over time.
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Radiative Transfer model

We again utilize the radiative transfer code RADMC-3D of Dullemond et al. (2012), as outlined in
section 1.2.2 to calculate optical depths. We use an observation distance of 113.9 pc adopted from
the estimated distance to protoplanetary disk system HD169142 (Macias et al., 2019; Fedele, D.
et al., 2017) with a disk inclination of zero. We adopt the dust opacity used by Li et al. (2019) from
Isella et al. (2018) as a function of wavelength and dust size. The details of this opacity model are
shown in Figure 1.10.

Figure 1.10: Dust opacity for different grain sizes. Dust opacity κ is represented as a function of
wavelength and dust size. We use the opacity model utilized by Li et al. (2019).

1.3.3 Results and Discussion

Maximum Dust Sizes

We conducted 30 1-D hydrodynamic simulations with a viscosity dead zone profile as described
above. We varied initial gas surface density Σg,c at rc = 100 AU across 2.75 orders of magnitude
from 0.1 g/cm2 to 56.1 g/cm2, incrementing by a factor of 4

√
10. We also varied the fragmentation

velocity vf from 1-10 m/s, incrementing by a factor of
√

10. We used a staggered set of initial gas
densities to obtain similar dust densities for different fragmentation velocities. A table of the peak
ring dust densities (in g/cm2) across the parameter space is shown in the table below.
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Fragmentation Velocity (m/s)
Initial Surface Density (g/cm2) 1 3.16 10
0.1 0.06098
0.178 0.03178 0.09498
0.316 0.01190 0.04513 0.15590
0.562 0.01599 0.06959 0.26418
1 0.02394 0.11300 0.45398
1.78 0.03879 0.18937 0.79069
3.16 0.06569 0.32392 1.37813
5.61 0.11421 0.56256 2.44931
10 0.20188 0.98695 4.32099
17.8 0.36128 1.74234 7.67112
31.6 0.64914 3.08199
56.1 1.16381

Plotting our simulated maximum dust sizes against peak ring dust density, we find an strongly
linear relation, shown in Figure 1.11. We include linear (amax = aΣd + b) and power law (amax =
exp(β) ∗ Σα

d ) fits. Both fits feature a bivariate correlation coefficient r within 0.2% of unity.

Figure 1.11: Maximum Dust Sizes vs Peak Dust Densities from 30 1-D viscosity dead zone
simulations using various initial dust densities and fragmentation velocities. We observe a strongly
linear trend and apply linear (dashed) and power law (solid) fits to the data.

19



CHAPTER 1. GAS-DUST INTERACTIONS

The details of our fits are listed in the tables below.

Linear Fit
Fragmentation Velocity (m/s) 1.0 3.16 10.0
Slope a 0.181 0.394 1.547
y-intercept b 0.000 -0.005 -0.051
Correlation r 0.99970 0.99985 0.99937

Power-Law Fit
Fragmentation Velocity (m/s) 1.0 3.16 10.0
Power α 1.065 1.110 1.027
Exponential β -1.622 -0.942 0.394
Correlation r 0.99834 0.99815 0.99958

As per equation 1.12, amax is not explicitly related to dust density Σd, so this relation is sur-
prising at a glance. However, we can explain this relation if the gas-dust ratios in the rings are
constant across initial surface densities, as fragmentation-limited dust size is afrag ∝ Σg. From
Figure 1.12 we find that these ratios are indeed quite constant, which may explain the relation.

Figure 1.12: Dust-to-Gas ratio present in each ring of our 30 simulations. We find that the ratio
stays mostly constant across dust densities, suggesting that the rate at which mass accretes into the
ring is relatively independent of gas density.
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We speculate that this constancy across initial dust density is due to a constant dust drift ve-
locity. From equations 1.15 and 1.16, we find that dust drift velocity is only weakly correlated
with local gas surface density, as the Σ−1

g factor in the Stokes number St somewhat cancels for
larger Stokes numbers with small η-values. With constant dust drift, the gas-dust ratio will remain
constant, as the quantity of dust accumulation in the rings will be proportional to the quantity of
dust immediately outside the rings, which is proportional to the initial gas density due to our fixed
initial dust-gas ratio.

We also find that the dust-gas ratio increases as we increase fragmentation velocity vf . We
speculate that this correlation is again related to drift velocity, as higher fragmentation velocities
allow dust to coagulate to larger sizes outside of the ring, increasing drift velocity and thereby
increasing the quantity of dust present in the ring in relation to the quantity of gas.

Optical Depths

Proper estimates of optical depth is essential to our ability to estimate dust sizes and densities.
From any measured spectral index α, which represents the slope of flux density Fν vs frequency
ν, from an optically thin disk with emission in the Rayleigh-Jeans regime, we can determine the
dust opacity power law κν = νβ via Fν ∝ ν2+β , or equivalently, α = 2 + β. Thus, our estimates
of dust opacities are explicitly tied to our estimates of optical thickness.

We utilize the 30 1-D hydrodynamic simulations with varying initial surface densities and
fragmentation velocities as described above to determine optical depths via the radiative transfer
models described in section 1.3.2. Our results are presented in Figure 1.13.
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Figure 1.13: Simulated Optical Depths for our 30 1-D viscosity dead zone simulations. We
observe a clear distinction between optical depths at different fragmentation velocities for densities
near 0.1 g/cm2, but the depths seem to converge at the extremes.
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At all simulated wavelengths, we observe a “convergence” of optical thicknesses for different
fragmentation velocities, with a larger spread near densities at or slightly larger than 0.1g/cm2.
In these regions, even with identical dust densities, larger fragmentation velocities increase the
optical depth, which is likely due to the larger dust sizes present at large fragmentation velocities.
At extremely low and high densities, dust grain size plays less of a role in optical depth, but at
some critical density near 0.1g/cm2, dust grain size plays a more significant role in determinations
of optical depth.

1.3.4 Summary and Future Work
In this section, we found a strongly linear relation between Maximum Dust Sizes and Dust Den-
sities in simulated protoplanetary disk rings formed by a viscosity dead zone in outer regions of
the disk. This relation could potentially be used as a soft constraint on observational estimates, but
importantly serves as a validation of the self-consistency of our theoretical models. It remains to
be seen whether similar relations hold for rings generated by other mechanisms such as planet-disk
interactions, or whether the relation still holds in 2-D viscosity dead zone simulations, which are
subject to the Rossby-Wave Instability, whose anisotropic vortices may violate the linear relation
we find in this report.

We also found a somewhat piecewise pseudolinear relation between Optical Thicknesses and
Dust Densities at mm and sub-mm wavelengths. As with maximum dust sizes, these relations may
not hold for rings generated by other mechanisms or for 2-D viscosity dead zone simulations, and
we have yet to determine whether similar relations are observed using different dust opacity mod-
els. There still is some disagreement between dust opacity models (Macias et al. (2019) estimates
optical depths and dust densities that wholly disagree with our results), so further investigation
using different opacity models is required.

Jordan T. Laune is attending Cornell University for a PhD program in the Department of
Astronomy and Space Sciences starting in Fall 2019. He attended the University of Chicago for
his undergraduate education, where he majored in physics and mathematics. His research interests
include protoplanetary disks and planet formation.

Cody Meng is a rising junior at Rice University in Houston, and is currently majoring in
Physics with a concentration in Computational Physics. He plans to attend graduate school for
Physics or Astrophysics.
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and Luca Ricci. The Disk Substructures at High Angular Resolution Project (DSHARP): I. Mo-
tivation, Sample, Calibration, and Overview. The Astrophysical Journal, 869(2):L41, December
2018. ISSN 2041-8213. doi: 10.3847/2041-8213/aaf741. URL http://arxiv.org/abs/
1812.04040. arXiv: 1812.04040.

Philip J. Armitage. Physical processes in protoplanetary disks. arXiv e-prints, art.
arXiv:1509.06382, Sep 2015.

T. Birnstiel, C. P. Dullemond, and F. Brauer. Gas- and dust evolution in protoplanetary disks.
Astronomy and Astrophysics, 513:A79, April 2010. ISSN 0004-6361. doi: 10.1051/0004-6361/
200913731. URL http://adsabs.harvard.edu/abs/2010A%26A...513A..79B.

T. Birnstiel, H. Klahr, and B. Ercolano. A simple model for the evolution of the dust population
in protoplanetary disks. Astronomy & Astrophysics, 539:A148, March 2012. ISSN 0004-6361,
1432-0746. doi: 10.1051/0004-6361/201118136. URL http://arxiv.org/abs/1201.
5781. arXiv: 1201.5781.

F. Brauer, C. P. Dullemond, A. Johansen, Th. Henning, H. Klahr, and A. Natta. Survival of the mm-
cm size grain population observed in protoplanetary disks. 1182:1169–1182, 2007. ISSN 0004-
6361. doi: 10.1051/0004-6361:20066865. URL http://arxiv.org/abs/0704.2332%
0Ahttp://dx.doi.org/10.1051/0004-6361:20066865. arXiv: 0704.2332.

F. Brauer, C. P. Dullemond, and Th. Henning. Coagulation, fragmentation and radial motion
of solid particles in protoplanetary disks. Astronomy and Astrophysics, 480:859–877, March
2008. ISSN 0004-6361. URL http://adsabs.harvard.edu/abs/2008A%26A...
480..859B.

Ruobing Dong, Shengtai Li, Eugene Chiang, and Hui Li. Multiple Disk Gaps and Rings Gen-
erated by a Single Super-Earth. (mm), 2017. ISSN 1538-4357. doi: 10.3847/1538-4357/
aa72f2. URL http://arxiv.org/abs/1705.04687%0Ahttp://dx.doi.org/
10.3847/1538-4357/aa72f2. arXiv: 1705.04687.

C. P. Dullemond, A. Juhasz, A. Pohl, F. Sereshti, R. Shetty, T. Peters, B. Commercon, and
M. Flock. RADMC-3d: A multi-purpose radiative transfer tool. Astrophysics Source
Code Library, record ascl:1202.015, 2012. URL http://adsabs.harvard.edu/abs/
2012ascl.soft02015D.

Fedele, D., Carney, M., Hogerheijde, M. R., Walsh, C., Miotello, A., Klaassen, P., Bruderer, S.,
Henning, Th., and van Dishoeck, E. F. Alma unveils rings and gaps in the protoplanetary sys-
tem hd 169142: signatures of two giant protoplanets. A&A, 600:A72, 2017. doi: 10.1051/
0004-6361/201629860. URL https://doi.org/10.1051/0004-6361/201629860.

24

http://arxiv.org/abs/1812.04040
http://arxiv.org/abs/1812.04040
http://adsabs.harvard.edu/abs/2010A%26A...513A..79B
http://arxiv.org/abs/1201.5781
http://arxiv.org/abs/1201.5781
http://arxiv.org/abs/0704.2332%0Ahttp://dx.doi.org/10.1051/0004-6361:20066865
http://arxiv.org/abs/0704.2332%0Ahttp://dx.doi.org/10.1051/0004-6361:20066865
http://adsabs.harvard.edu/abs/2008A%26A...480..859B
http://adsabs.harvard.edu/abs/2008A%26A...480..859B
http://arxiv.org/abs/1705.04687%0Ahttp://dx.doi.org/10.3847/1538-4357/aa72f2
http://arxiv.org/abs/1705.04687%0Ahttp://dx.doi.org/10.3847/1538-4357/aa72f2
http://adsabs.harvard.edu/abs/2012ascl.soft02015D
http://adsabs.harvard.edu/abs/2012ascl.soft02015D
https://doi.org/10.1051/0004-6361/201629860


BIBLIOGRAPHY

Wen Fu, Hui Li, Stephen Lubow, Shengtai Li, and Edison Liang. EFFECTS of DUST FEEDBACK
on VORTICES in PROTOPLANETARY DISKS. Astrophysical Journal Letters, 795(2), 2014.
ISSN 20418213. doi: 10.1088/2041-8205/795/2/L39. arXiv: 1405.7379.

Jeremy Goodman and Roman R. Rafikov. Planetary Torques as the Viscosity of Protoplan-
etary Disks. The Astrophysical Journal, 552(1990):793–802, 2001. ISSN 0004-637X.
doi: 10.1086/320572. URL http://stacks.iop.org/0004-637X/552/i=
2/a=793%5Cnpapers3://publication/doi/10.1086/320572%5Cnhttp:
//arxiv.org/abs/astro-ph/0010576. arXiv: astro-ph/0010576.

Andrea Isella, John M. Carpenter, and Anneila I. Sargent. Structure and evolution of pre-
main sequence circumstellar disks. 2009. ISSN 0004-637X. doi: 10.1088/0004-637X/701/
1/260. URL http://arxiv.org/abs/0906.2227%0Ahttp://dx.doi.org/10.
1088/0004-637X/701/1/260. arXiv: 0906.2227.

Andrea Isella, Jane Huang, Sean M. Andrews, Cornelis P. Dullemond, Tilman Birnstiel, Shangjia
Zhang, Zhaohuan Zhu, Viviana V. Guzmán, Laura M. Pérez, Xue-Ning Bai, Myriam Benisty,
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Chapter Abstract

In this study, we perform a series of Smooth Particle Hydrodynamics (SPH) simulations to model
a giant impact between a large planetesimal and proto-Uranus by varying the initial velocity and
impact parameter of impactors between 1− 3M⊕. The 98◦ obliquity in Uranus’ orbit is attributed
to the impact, which has also been used to account for observational abnormalities such as the
orbits of the Uranian satellites, the planet’s low thermal flux rate, and the tilt of its magnetic field.
Previous studies primarily focus on analyzing dynamics of the system and do not comment on
the effects of the impact on Uranus’ long-term chemical configuration. Using more refined EOS
schemes and a variety of chemically motivated approaches, we build on the results of the SPH
simulations to better inform our understanding of the composition of Uranus and its satellites. In
particular, we compare the results of a broad equilibrium chemistry framework to those obtained
from species conversion within a thermochemical kinetics network to construct a holistic image
of chemical developments surrounding proto-Uranus. Globally, we see a large loss of molecular
hydrogen (H2) and loss in HCN and C2H2. Hydrocarbon abundances fluctuate slightly in both
regions, though atmospheric trajectories saw CH4, C2H6, and C2H4 production while chemical
analyses of mantle particles resulted in the disappearance of some of these hydrocarbons that serve
as precursors to organic molecule synthesis. The results of this study provide us with further
evidence that can be used to validate the giant impact hypothesis, and a purely chemical signature
that could observationally constrain the parameters of such an impact.
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2.1 Introduction
Not much is known about the structure and composition of Uranus. Few observations and studies
have sought to investigate the structure and composition of Uranus beyond the Voyager flybys
and occasional Hubble imaging, described in reports such as Stone and Miner (1986). Despite
this relative lack of scrutiny, Uranus is host to a slew of observational oddities when compared
to models used to describe the other giant planets (Podolak and Helled (2012), Greenberg (1975),
Hanel et al. (1986), and Fortney et al. (2011)).

One of the most obvious of these uncertainties is its 98◦ obliquity of Uranus’ rotational axis
(NESS et al. (1986) and, in contrast, the regularity of the circular, coplanar orbits of its satel-
lites (Greenberg (1975)). The most popular explanation for this observation is a giant impact that
knocked it on its side early on in the planet’s protoplanetary phase (Safronov (1972)). Such an im-
pact is theorized to have involved a large (1 − 3 Earth-masses, M⊕) planetesimal and could some
of the observed abnormalities regarding the planet. Besides the large tilt in the axis of rotation of
Uranus, it has a relatively low thermal flux and weak internal heating compared to Neptune (Hanel
et al. (1986)). Most models of the planet’s internal stucture note that it is under-luminous and
perhaps exhibits some barriers to convective cooling (Fortney et al. (2011)).

The darkness of minor Uranian satellites and the rings of Uranus may indicate an increased
concentration of the same dark material, believed to be carbonaceous, found on the surfaces of
its major moons (Stone and Miner (1986)). This, in addition to the presence of H2O and CO2

ice bands on four of the five major moons of Uranus (Ariel, Umbriel, Titania, Oberon), described
in Cartwright et al. (2015), is suggestive of potential synthesis of organic compounds through
mechanisms such as Fischer-Tropsch processes (see Yung and DeMore (1998)).

In this study, we build on tests of Uranus’ giant impact hypothesis as pioneered by Slattery
et al. (1992) and Kegerreis et al. (2018) using Smoothed Particle Hydrodynamics (SPH) codes.
In the event of a collision between proto-planetary Uranus and a giant impactor, debris from both
Uranus and the impactor would have been kicked off and sent into orbit around the planet, forming
the satellites we see today. The effects of such an impact have the potential to explain the regularity
of their orbits (Greenberg (1975)), as well as the planet’s relatively weak thermal emission levels
(Hanel et al. (1986)). Previous studies using SPH codes to model the effects of a giant impact
on Uranus implicitly assume a static chemical configuration of the system and often do not com-
ment on any chemical processes that might be observed. Discussion of our SPH models can be
found in Section 2.3. Simulation setups and chemical perspectives of the giant impact, including
expectations derived from equilibrium calculations, are described in Section 2.4. Our results are
summarized in Section 2.5, and are discussed in Section 2.6.

2.2 Theory

2.2.1 Smooth Particle Hydrodynamics (SPH)

We use Supernova Smooth Particle Hydrodynamics (SNSPH) (Fryer et al. (2006)) to model the
giant planetary impact, with models for proto-Uranus and impactor comprised of ten million of
individual particles with their own masses, compositions, and trajectories. In essence, SNSPH is a
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method in which particles are “smoothed” out over a representative length scale h that defines the
interaction area of that particle. Use of such a smoothing length allows for full spatial coverage
by the simulated particles, as the production of enough particles to fully cover the body being
simulated and provide the desired resolution is often extremely computationally expensive. The
individual particle trajectories are determined by summing up the gravitational and pressure forces
from each particle’s neighbors within a radius of 2h. The SNSPH algorithm may be summarized
as follows:

1. Calculate particle densities

2. Obtain particle pressures via a specified equation of state

3. Calculate particle accelerations

4. Advance particles, internal energies, possibly modify h

We will now provide a brief summary of terms relevant to this calculation. The density of a
particle i is determined by

ρ =
∑
j

mj ×W (ri − rj, h), (2.1)

where mj is the mass of a neighbor (within 2h) and W (ri − rj, h) is the smoothing kernel taking
as its arguments the distance between particles i and j, and the mean smoothing length of the two
particles h =

hi+hj
2

.
The acceleration of particle i is given by

dvi
dt

= −
∑
j

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

+ Πij

)
∇iWij, (2.2)

and the specific internal energy of particle i, ui, is given by

dui
dt

=
Pi
ρ2
i

∑
j

mj(vi − vj) · ∇iWij +
1

2

∑
j

mjΠij(vi − vj) · ∇iWij, (2.3)

where Pi is the pressure obtained from the relevant equations of state (see Section 2.3). Πij is an
artificial viscosity defined by

Πij =

{
−αc̄µij+βµ2

ij

ρ̄
(vi − vj) · (ri − rj) <= 0

0 else
,

and is not based on any properties of the simulated fluid. It is included as a buffer to more accu-
rately model shocks in the system, which result in nonphysical oscillations near the shock front. In
this expression, c̄ = 1

2
(ci + cj) and ρ̄ = 1

2
(ρi + ρj) are the average speed of sound and density, re-

spectively, of the interacting particles, α and β are the bulk and von Neumann-Richtmyer viscosity
coefficients, and

µij =
h(vi − vj) · (ri − rj)

|ri − rj|2 + εh2
.
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In the above expression, ε is used to prevent divergences at very small distances, and is typically
set to 0.01.

SNSPH uses an “oct-tree” algorithm to dramatically speed up neighbor searches, dividing the
simulation space into particle-containing “cells” within a hierarchical “tree” data structure. The
topmost level (the “root”) of the tree represents the entire volume of simulation space, and is
divided into eight equal daughter nodes. These daughter nodes are then recursively subdivided
into “branches” until the volume being subdivided encapsulates only 0 or 1 particles, at which
point it is given the apt designation of “leaf.”

Particles are stepped forward in time by integrating Equation 2.5 using fourth-order accurate
Runge Kutta methods.

2.2.2 Chemical Kinetics
While the equilibrium calculations provide us with a general picture of global states that the Ura-
nian chemical system may occupy, it is also constructive to consider the smaller scale chemical
dynamics, namely in the form of tracking chemical kinetic developments. Chemical kinetic analy-
ses allow us to analyze potential meta-stable equilibrium states that may differ from the equilibrium
calculations described in Section 2.4.2. The reactions from Section 2.4.2 progress through a com-
plex series of elementary steps; for example, at low pressures, Equation 2.4 can be broken down
as:

CH4 + H→ CH3 + H2

CH3 + OH→ CH2OH + H

CH2OH + M→ H2CO + H + M

H2CO + H→ HCO + H2

HCO + M→ H + CO + M

H + H2O→ OH + H2

CH4 + H2O→ CO + 3H2

as described in Tsai et al. (2017). Among other things, a kinetics calculation allows us to poten-
tially document partial progress of the net reaction’s constituent steps.

Numerical Integration

To perform these calculations, we use the open source chemical evolution code, Cantera (Good-
win et al. (2018)). The Cantera interface offers two primary functions:

1. Converts a symbolic description of a network of reactions into a formal mathematical system
of equations

2. Performs numerical integration of the resulting ODEs (using the SUNDIALS suite)

This first use can be boiled down to an expression of the law of mass action: the rate of a chem-
ical reaction is directly proportional to the product of the concentrations of the reactants. The
first-order differential equation for a parameter of interest, e.g. concentration, mass fraction, mole
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fraction, etc., can be constructed by conserving the number of particles present in a reaction. For-
mally, for a species i, we document the rate of change of the parameter n with the difference of the
production (Pi) and loss (Li) components, the reactions within the network that contribute to the
creation and conversion of this molecule:

dni
dt

= Pi − Li =
∑
i→j

kijninj,

where kij is the rate constant corresponding to the reaction from species i → j. This simple de-
scription for a single body conversion is easily generalized to multi-body reactions and applied to
every species of interest in a reaction network, and yields a system of coupled differential equa-
tions. Primarily, the reactions we consider follow the Arrhenius form for temperature dependence
of the rate constant

k = ATB exp

{(−Ea
RT

)}
,

whereA,B, andEa are empirically determined constants that describe a reaction and are generally
dependent on pressure. The Cantera package then offers an inbuilt numerical ODE solver to cal-
culate the progress of the inputted reactions across specified temperature and density trajectories.
However, we find the inbuilt Cantera integrator to be relatively inefficient with the volume of
reactions and the conditions of our trajectories, so we utilize the pyJac analytical Jacobian matrix
generator optimized for chemical kinetics analysis (Niemeyer et al. (2017)). The pyJac module
uses implicit Runge-Kutta integration to advance the system of ODEs that describe the chemical
configuration.

2.3 Model Creation
Computationally, we construct the models using the “shooting” method for solving second order
boundary value problems. This method consists of iterating through guesses at solutions that
satisfy both the relevant equations of state and a set of specified boundary conditions, including
break radii between different layers of material of the desired model, and guesses at its initial (core)
temperature and density. We then iteratively check whether our selected guess is a solution to the
function defining our differential equation. If so, then the solution to the initial value problem is
the solution to our boundary value problem. For our purposes, the produced solution describes the
temperature and density distribution between the layers.

Similar to Kegerreis et al. (2018), we use this method to create a spherically symmetric 3-
layer profile consisting of a rocky core, icy mantle and gaseous (isothermal) atmosphere for proto-
Uranus by iterating boundary layer shells until the model has a total radius of around 4R⊕ and a
surface temperature of a few hundred Kelvin. As a mostly rock/icy planetesimal, we expect that
the impactor will not have an atmosphere. Adding an atmosphere would also greatly increase the
computational complexity of the problem, so we opt to use a two-layer model consisting of only
a rocky core and ice mantle. Impactor radii range from 2.0 − 2.3R⊕, and impactor masses are
determined roughly as the difference Mi = 14.53 −Mu, where Mu is the mass of proto-Uranus.
The masses of the impactor and corresponding proto-Uranus do not always add up to the modern
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Figure 2.1: Cross section of spatial particle distributions for our 12.5 M⊕ proto-Uranus model.

literature value of Uranus, but small discrepancies can be attributed to further impacts and other
forms of mass accretion over time. Table 2.1 provides specifications for all simulated bodies.
Simulations were created with 10 million particles.

2.3.1 Proto-Uranus
In order to construct a planet that is consistent with literature discussions for proto-Uranus, we
use a combination EoS scheme, constructing the core with the EoS described in Hubbard and
MacFarlane (1980) and the mantle/atmosphere with the Tillotson EoS, using material parameters
from Reinhardt and Stadel (2017). Despite the drawbacks of the relatively simple Hubbard EoS,
we prioritize observational consistency and note that much of the important chemistry will be
limited to the mantle and atmosphere, where we use the more sophisticated Tillotson EoS. While
the Tillotson is more precise in terms of describing the pressure and density distributions that we
construct for the planet, it is not thermodynamically complete, i.e. entropy is not well-defined
and it lacks a radiative cooling mechanism. Limitations of Tillotson material parameters render
us unable to choose or mix compounds in our ice mantle layer, whereas previous SPH studies of
proto-Uranus (Kegerreis et al. (2018), Slattery et al. (1992)) have used specific mixtures of H2O,
NH3, and CH4. However, the Tillotson EoS has been used extensively in hyper-velocity impact
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simulations (Reinhardt and Stadel (2017)), so for the purposes of this introductory investigation
into the chemistry of Uranus’ giant impact, it will suffice. A future, more holistic study of the
chemistry ought to implement a more complex EoS, such as the SESAME or ANEOS tabular
constructions or one derived from first principles.

We construct the planetary models guided by the few observational constraints (and the indirect
constraints derived from these) present in the literature regarding Uranus. Namely, we attempt to
mirror the results of Podolak et al. (1995), Podolak et al. (2000), and Nettelmann et al. (2013),
producing models with a core density of 9×103−11×103 kg/m3, relatively similar internal layering
(rcore ∼ 0.79R⊕ and rmantle ∼ 3.0R⊕), surface temperatures on the order of a few hundred Kelvin,
temperature-density distributions using α values consistent with (Woolfson (2007)), and a reduced
moment of inertia ∼ 0.22 (Podolak and Helled (2012)). All our planetary models consist of the
Hubbard rocky core (38% SiO2, 25% MgO, 25% FeS, and 12% FeO). The models also include
an ice mantle specified by the (terrestrial) Tillotson parameters, with a slight modification to the
bulk moduli noting the high temperature and pressure conditions of the protoplanetary interior
(R. Frank et al. (2004)). See Fig. 2.2 for the density, temperature, and pressure distributions of our
models. Note that deviations from current hypothesized values for Uranus’ internal layering can
be attributed to the conditions of impact (protoplanetary phase); in the billions of years since and
during the impact, we expect the planet to have accumulated additional mass and the layers to have
grown.

2.3.2 Impactor
Our impactors are generated entirely from Tillotson material parameters provided in Reinhardt and
Stadel (2017), again using the bulk modulus for ice from R. Frank et al. (2004). Impactor cores
are made with basalt or granite, while mantles are comprised of ‘icy’ material.

We place very few constraints on our impactor models beyond its mass. Though Slattery et al.
(1992) lists the density upper limit of a 2M⊕ impactor as 2800kg/m3, densities of models used in
Kegerreis et al. (2018) are around 2−3 times this value. We note that our models are comparable to
those of Kegerreis et al. (2018), and that there are relatively large uncertainties (and as such, relative
flexibility) in constraints on impactor structure and composition. Nevertheless, the Tillotson EoS
we use is less stiff for rock and ice than the Hubbard EoS that Kegerreis et al. (2019) uses, i.e.
small changes in density result in less drastic changes in pressure.

2.4 Methods

2.4.1 SNSPH
We carry out 13 giant impact simulations, considering 4 scenarios for each of our 3 impacting
pairs. These small simulation grids bracket the effects of impact velocity v and impact parameter
β on shock chemistry in our proto-Uranus model. Here β takes the standard definition of the
perpendicular distance between the path of our impacting body and the center of proto-Uranus
(see Figure 2.3). We vary impact velocity from 1 km/s to 10 km/s and vary β between 0 and 2
Earth radii.
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Table 2.1. Table of specific parameters used for
various simulation profiles of proto-Uranus.

Ired = I
MR2 is the reduced moment of inertia, where

M and R are the total mass and total radius of the
body respectively. Best estimates for modern Uranus
place this value at 0.23 (Podolak and Helled (2012)).

Proto-Uranus Impactor
Set Ired Ice/Rock Mass Ice/Rock

11.5 M⊕ 0.23 16.2 3 M⊕ 11.7
12.5 M⊕ 0.20 6.13 2 M⊕ 8.54
13.5 M⊕ 0.23 4.47 1 M⊕ 0.13

Table 2.2. Initial velocities and setups for each of the 13 simulated
collisions.

Simulation Set Impact velocity (km/s) β (R⊕ )

1a 11.5 M⊕ & 3.0 M⊕ 1 0
1b 11.5 M⊕ & 3.0 M⊕ 10 0
1c 11.5 M⊕ & 3.0 M⊕ 1 2
1d 11.5 M⊕ & 3.0 M⊕ 10 2

2a 12.5 M⊕ & 2.0 M⊕ 1 0
2b 12.5 M⊕ & 2.0 M⊕ 10 0
2c 12.5 M⊕ & 2.0 M⊕ 1 1.5
2d 12.5 M⊕ & 2.0 M⊕ 10 1.5

3a 13.5 M⊕ & 1.0 M⊕ 1 0
3b 13.5 M⊕ & 1.0 M⊕ 10 0
3c 13.5 M⊕ & 1.0 M⊕ 1 1.5
3d 13.5 M⊕ & 1.0 M⊕ 10 1.5
3d 13.5 M⊕ & 1.0 M⊕ 50 1.5
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Figure 2.2: Density, temperature and pressure profiles for three proto-Uranus models (solid curves)
having 11.5 M⊕, 12.5 M⊕ and 13.5 M⊕ masses. Our models attempt to span a structural and
thermal space for proto-Uranus. Reduced moments of inertia for our models range from 0.20 to
0.23. Impactors (dashed curves) have masses 1 M⊕, 2 M⊕ and 3 M⊕. For the impactors, we vary
ice/rock content mass ratio between 0.6 and 10.
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β

v

Impactorproto-Uranus

Figure 2.3: Schematic of impact parameter β and impacting velocity v in our collision setups. For
each of our three proto-Uranus-impactor pairs, we very v and β to explore sensitivity to shock
chemistry to impact scenario. We vary impact parameter from 0 to a few earth radii for each
impacting pair. We consider impacts of 1 km/s and 10 km/s in each scenario.

Variations of parameter space in our simulations are provided in Table 2.2. Temperature and
density plots from Simulation 2d are shown in Fig. 2.6. Given the hypothesis of Parisi and Brunini
(1997) and others that the lower bound on the impactor’s initial velocity in order for it to be
captured as a satellite is 22 km/s, we carry out one calculation with 50 km/s.

2.4.2 Equilibrium Calculations

To explore the chemistry within the high temperature and pressure regime of the giant impact,
we guide our intuition with a toy equilibrium model. This model locates the position of global
chemical equilibria in the three reactions describing the chemistry of the solar nebula (see Ch 4.5
Yung and DeMore (1998)):

CH4 + H2O 
 CO + 3H2 (2.4)

N2 + 3H2 
 2NH3 (2.5)

CO + H2O 
 CO2 + H2 (2.6)

This framework is based on the understanding that the collision occurred in the protoplanetary
phase of Uranus’ early evolutionary history, allowing us to assume modified solar compositions
for chemical species and analogous thermochemical processes.

We begin by isolating the position of equilibrium for Equation 2.4, assuming that we will
observe minimal progress of the other two given the chemical abundances of Uranus’ atmosphere
(see relative abundances of C,H, and N in Yung and DeMore (1998)). This basic assumption gives
us a starting point to work out general equilibrium states of the system.

Because the chemical equilibrium is characterized by state functions, the equilibrium position
should be independent of the path taken, and, in particular, is purely dependent on the temperature
at a given time. To check this assumption, we compute position of equilibrium for linear temper-
ature growth and fall, comparing equilibrium concentrations calculated from pressures updated at
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each step to those from a constant mole fraction assuming reversible adiabatic compression (See
Figs. 2.4b and 2.4c).

To solve for the position of equilibrium, we use a bracketing bisection approach with the reac-
tion quotient Q, a method of ’zooming’ in on the true position of equilibrium. We first compute
the equilibrium constant for each specific temperature, using the Gibbs-Helmholtz equation to
establish temperature dependence of K. We can, to good approximation, write this as:

Keq(T ) = exp

(
− 1

R

(
∆G298

298
+ ∆H298

(
1

T
− 1

298

)))
where R is the gas constant and ∆G and ∆H represent the Gibbs free energy and the enthalpy
change of the reaction, respectively, determined from the standard energies and enthalpies of for-
mation provided in Lange’s Handbook of Chemistry (Lange and Dean (1999)). For a reaction
aA + bB→ cC + dD, assuming a concentration change of x, we compute

Q =
([C] + x)c([D] + x)d

([A]− x)a([B]− x)b
.

Using this quantity in conjunction with a variety of root-finding algorithms, we locate the position
of equilibrium at each timestep along the mock trajectory.

2.4.3 Chemical Kinetics
Initial Conditions

We use the VULCAN framework to generate initial conditions to initialize the Cantera integrator
(Tsai et al. (2017)). This framework, designed to model thermochemistry of hot exoplanetary
atmospheres via eddy diffusion, uses a photochemical C-H-O-N network and the Ros2 solver. We
use the temperature-pressure profile taken from Moses et al. (2011) (see Fig. 2.5). Broadly, we
treat the VULCAN framework as an equilibriation mechanism to derive a more rigorously motivated
set of initial abundances than those used in Section 2.4.2. From a given particle’s initial pressure
– calculated using the ideal gas EoS for the atmosphere and the Tillotson EoS for the mantle – we
extract corresponding abundances of different species.

2.5 Results

2.5.1 Kinetics
We processed 2000 trajectories total, selected at random from the atmosphere and the mantle from
one of our simulation runs and pass them through Cantera. Several sample plots of chemical
abundances are shown in Figs. 2.7 and 2.8. Potential sources of organic compounds are plotted in
Figs. 2.9a and 2.9b.

For the atmosphere, we focus on comparing particles that observe a shock during the trajectory
to those that do not. From Figs. 2.9a and 2.9b, certain molecule abundances (e.g. C2H6) appear
to be stabilizing at a new equilibrium (not initial conditions). In particular, we see that the shock
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(a) Temperature trajectory used for the equilibrium calculations
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(b) The concentrations of CH4 and H2O overlap because they were assumed to have the same initial
partial pressure. We also manually implement chemical quenching at 1000 K (see Prinn and Barshay
(1977)).

0 2000 4000 6000 8000 10000

Timestep (sec)

10−9

10−7

10−5

10−3

10−1

101

103

105

P
re

ss
u
re

(a
tm

)

CO

H2

CH4

H2O

NH3

(c) Equilibrium calculation for species with constant mole fraction and pressure varied assuming re-
versible adiabatic compression of an ideal gas.

Figure 2.4: Equilibrium calculations for a particle following the temperature trajectory seen in the
bottom plot. We begin with initial partial pressures of p(H2) = 10 atm, p(CH4) = p(H2O) =
1 atm, and p(CO) = 0 atm.
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Figure 2.5: The default TP-profile provided by VULCAN, for the exoplanet HD 189733b.

seems to create small amounts of several smaller hydrocarbons and increased production of some
of the larger, oxidized hydrocarbons, though this could also be attributed to the temperature bump
following the shock.

We choose mantle particles that begin in the mantle and finish in the atmosphere, by applying
the pressure boundary condition between the mantle and atmosphere from Bethkenhagen et al.
(2017), Fig. 6, of 13 GPa. We extend this boundary condition to 20 GPa because we hope to select
trajectories from the thin light purple band in the figure, which is slightly below the boundary
provided. This band represents an intermediate phase between the icy mantle and the gaseous
atmosphere (Bethkenhagen et al. (2017)). We impose a maximum temperature condition of 12500
K on the trajectories that pass this pressure boundary condition, assuming that reactions proceed
extremely quickly and that most molecules have been vaporized much beyond this temperature.

We generate reaction paths following various elements (C, N, H) and compare results using our
approximated initial conditions based on solar abundances and results generated from VULCAN,
as well as results between two different chemical reaction networks, Venot and GRI-MECH 3.0
(See Appendix A for details of our comparisons). For atmospheric particles, we compare reaction
paths between shocked and unshocked particles, as in Fig. 2.10. Here we see that the shocked
trajectory seems to initiate higher reaction fluxes throughout the network. In particular, in Fig.
2.10b we see much of the flux is concentrated around H,H2,CH4,CH3, while in Fig. 2.10a there
does not appear to be emphasis on any one specific cycle. In addition, we see stronger reaction
flux towards larger hydrocarbons, such as C2H6, in the shocked trajectory.

We also compute net abundance differences for all species between the initial and final states
of the trajectories. Results for species of note can be seen in Table 2.3. We observe small losses
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Figure 2.6: Snapshots of a 12.5 M⊕, 10 km s−1, β = 1.5 R⊕ simulation collision taken at different
points in time, plotted for density (top panels) and specific internal energy (bottom panels).
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Figure 2.7: Abundances of small molecules for an atmospheric trajectory.
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Figure 2.8: Abundances of small molecules for a mantle trajectory.
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(a) Mass fractions of large molecules for an atmospheric particle that passes through a shock. Noise
around the shock is an of the sharp temperature/density rise on the integration.
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(b) Mass fractions of large molecules for an unshocked atmospheric particle.

Figure 2.9: Comparison of hydrocarbon abundances between a shocked and unshocked trajectory
for an atmospheric particle with the planetary atmosphere network Venot.
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(a) Reaction path diagram produced from the trajectory of a particle passing through a shock (see Fig.
2.9a).

(b) Reaction path diagram produced from an unshocked particle trajectory (see Fig. 2.9b).

Figure 2.10: Comparison of molecular and elemental fluxes for hydrogen in an atmospheric parti-
cle using the Venot reaction network.
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Table 2.3. We calculate the average change in mass fraction for the listed species using both
reaction networks and compare results for both regions. Selected species of interest display

substantive creation or disappearance, and reflect differences between the regions and/or networks
analyzed. Fields marked ‘n/a’ refer to molecules not included in the corresponding network.

Atmosphere Mantle
Species GRI Venot GRI Venot

H2 -0.024 -0.027 -0.073 -0.077
CH2 (3) −5.959× 10−6 −7.334× 10−6 0.001 0.001
CH2 (1) −2.918× 10−7 −4.828× 10−7 1.896× 10−4 2.476× 10−4

CH4 0.016 0.022 −6.339× 10−4 −6.466× 10−4

CO -0.003 -0.004 -0.017 -0.016
C2H2 -0.018 -0.020 -0.054 -0.058
C2H6 0.003 4.115× 10−4 −5.309× 10−8 −5.578× 10−8

C2H4 0.003 0.004 −1.224× 10−4 1.330× 10−4

NH2 −9.158× 10−7 −1.048× 10−6 1.040× 10−4 2.813× 10−5

NH3 −9.837× 10−6 4.559× 10−6 −1.183× 10−5 −2.134× 10−5

NO 0.002 1.046× 10−9 8.192× 10−5 8.458× 10−7

N2 -0.001 −2.315× 10−4 -0.018 -0.123
HCN 1.451× 10−4 -0.009 -0.056 -0.070
H2CN −2.223× 10−6 −3.010× 10−6 2.951× 10−5 6.248× 10−6

C4H10 n/a 1.030× 10−6 n/a −1.370× 10−15

C2N2 n/a −1.338× 10−5 n/a −1.324× 10−4
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of both electron configurations of CH2 in the atmosphere, and similar gains in the mantle. We
also note production of certain hydrocarbons, i.e. C2H6andC2H4, in the atmosphere, and losses in
the mantle. Broadly, we see dissociation of molecules into elemental forms (growth in elemental
abundances) across both networks and regions, which is to be expected given the high pressure and
temperature conditions of the collision. Specific comparisons of results obtained via the GRI and
Venot networks are given in Appendix A.

2.6 Conclusions
We run a suite of smooth particle hydrodynamics simulations to model the giant impact hypoth-
esized to have knocked proto-Uranus on its side ∼4 Gy ago. Across the different facets of the
parameter space, we observe temperatures exceeding 10000 K and pressures that reach several
Mbar. Feeding trajectories extracted from these simulations into our kinetics analysis framework
outlined in Section 2.2.2 shows that the high temperature and pressure environment of the giant
impact have the potential to jostle the system into new equilibrium states. Namely, we observe
substantial production and loss of certain molecules in the atmosphere and the mantle in the loss of
small molecules such as CH4 and CO and the production of some long hydrocarbons and other ni-
trogenous compounds. We also observe the effects of shock physics in the atmosphere and extreme
heating in the mantle on the abundances of different molecules.

Ultimately, we would like to see whether chemical conditions of post-impact Uranus allow
for the production of organic compounds on Uranus. Both photochemistry and ion chemistry can
generate organics, and we will have both in the giant impact, so future studies should also look
to incorporate these, in addition to surface reactions. The hydrocarbon production described in
previous sections hints at the potential for Fischer-Tropsch processes (organic producing reactions)
to occur in the post-impact environment.

We also note that discrepancies between the results of our toy model (see Sec. 2.4.2) and the
kinetics (see Sec. 2.5.1) can be resolved when we return to look back at our initial assumptions.
Many of the guiding assumptions we drew from Yung and DeMore (1998) reflect a far cooler initial
environment, with temperatures in the tens to hundreds of Kelvin, whereas the majority of our ran-
domly sampled particles begin their trajectories at temperatures greater than 1500 K. In the range
of temperatures we assume for our initial equilibrium calculations, we expect methane to dominate
over carbon monoxide, and for the abundances of these two species to be exchanged as temperature
rises. We see this reflected in our kinetics analyses, which equilibrate the system before initiating
any integration. The starting temperatures of the trajectories of around 2000 K are consistent with
the abundance of CO over CH4, as shown in Fig. 2.7. We additionally expect concentrations of
CO to not fluctuate very much because it is a relatively tightly bound molecule. Any significant
dissociation of such a molecule likely would only be seen in trajectories dealing with much higher
temperatures than the range specified in Section 2.5.1. Further tests of the kinetics analysis ought
to process trajectories that extend down to lower initial temperatures and higher maximum tem-
peratures to verify these claims. Any further discrepancies can potentially be attributed to using a
hot exoplanetary TP-profile (see Fig. 2.4a) and not one that is specifically constructed for Uranus.
Given the differences in molecular abundances even within the atmosphere of Uranus, we see mo-
tivation for a broader study moving forward. Future work can sample particles from the entire (10
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million particle) simulation and analyze the chemical differences across different regions of the
planetary setup, yielding a statistical distribution of the chemistry on and around the impact site.

It is important to keep in consideration that we do not account for the possibility of reaction
enthalpy feeding back into local temperatures of the system. Following the elementary calculation
that

∆T =
∆H

cP
=

205896J/mol

28.6J ·K/mol
≈ 7000K,

and making the (preliminary) terrestrial assumption that the impact proceeds in legs of constant
pressure and volume, the temperature change brought about by Equation 2.4 proceeding to equi-
librium is on the order of 103K. Though this is something that the EoS should in theory already
account for, the fact remains that any thermochemical cooling proceeding from the chemical re-
actions taking place is not currently included within our hydrodynamics simulations. That being
said, the results of our study provide a useful benchmark for chemical developments in the proto-
Uranian atmosphere. Future, more refined work can implement appropriate reactive flow schemes
that feed chemical processes back into hydrodynamic calculations. We also suggest that future
work consider the recommendation of Brundage (2013) to reformulate the Tillotson EoS with a
variable specific heat to match more closely to known shock data.

Furthermore, in our delineating pressure assumption of 20 GPa (discussed in Section 2.5.1),
we use a much different EoS than Bethkenhagen et al. (2017), from whom we have taken this
result. Bethkenhagen et al. (2017) obtains their EoS data from the Vienna Ab Initio Simulation
Package (VASP), a Density Functional Theory Molecular Dynamics (DFT-MD) code. This should
be treated as a preliminary assumption, and we strongly recommend that measures are taken to
improve these initial cuts on mantle trajectories. In addition, we suggest further work be done on
multi-material phase transitions in the style of Bethkenhagen et al. (2017) to allow for improved
understanding and analysis of what is going on in the interior layers of Uranus.
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Figure 2.11: Differences between elemental and molecular abundances as calculated using the
GRI-MECH 3.0 and Venot chemical networks.

Appendix A: Comparison between the GRI-MECH 3.0 and Venot
Reaction Networks

For our analysis in the atmosphere, we primarily compare two reaction networks, the Venot plan-
etary atmosphere network and the the GRI-MECH 3.0 (hereafter referred to as GRI) high tem-
perature combustion network. The most robust network available in the literature for modeling
planetary atmospheres is the Venot reaction network, designed for the atmospheres of hot Jupiter-
like exoplanets (Venot, O. et al. (2012)). Optimized for steady state hot planetary atmospheres,
this network is valid for temperatures between 300 − 6000 K and pressures up to a few hundred
bars. This network contains 105 species and over 950 reversible gas phase reactions. Given that
much of our chemistry involves extremely high pressures and temperatures (with many particles
exceeding the range of validity provided by this network), we compare the results produced from
the Venot network with the higher temperature GRI network, designed to model natural gas com-
bustion (Smith et al. (1999)). As a combustion network, GRI is optimized for temperatures up
to 6000 K. This network contains 53 species and 325 reactions, including some three-body and
pressure based reactions as well.

In the atmosphere, these two reaction networks produce similar results, while in the mantle
there are certain discrepancies in chemical abundances (see Fig. 2.11). To some extent, these
discrepancies may be attributed to Venot’s oxidation of large molecules (GRI does not), though
both are gas-phase networks.

We also compare the reaction path networks produced from the two networks. Figures 2.12a
and 2.12b compare the reaction path networks following the evolution of elemental nitrogen (N)
over the course of a mantle trajectory. As depicted, there is more N flowing through NH2 in GRI
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than in Venot. Specifically, N is primarily stuck in a cycle between HCN, CN, and C2N2 in the
diagram produced by Venot, and exits this loop in significant quantities only in the form of H2CN.
Note that the Venot network differentiates between different electron configurations of N, i.e. N2D
and N4S, whereas GRI treats all forms of elemental nitrogen as one and the same N. We find these
observations to be corroborated by atmospheric reaction paths.

Additionally, we note that the GRI network involves many more reactions flowing through CH2

(both electron configurations), while the Venot network does not. We document this in Fig. 2.13,
where we see large fluxes moving throughout the system, with multiple paths by which reactions
can proceed to produce CH2 in Fig. 2.13a. In Fig. 2.13b, however, we see significant cycling
between only a few molecules, with a very low flux of reactions proceeding towards CH2 (labeled
as 3CH2, the triplet state of CH2).

From Table 2.3, we note certain discrepancies between the GRI and Venot networks; specif-
ically, the combustion network appears to involve a more complex cycling of nitrogen, so more
species are involved with the reactions (see Fig. 2.12a). The production of NO in the two net-
works, respectively, corroborates this statement. The Venot network tracks more hydrocarbons,
and in particular, we see a small production of C4H10, though generally we see very small fluctua-
tions of the oxidized hydrocarbons.
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(a) Reaction path diagram produced from the GRI-MECH 3.0 combustion network.

(b) Reaction path diagram produced from the Venot planetary network.

Figure 2.12: Comparison of molecular and elemental fluxes for nitrogen in a mantle trajectory.
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(a) Reaction path diagram produced from the GRI-MECH 3.0 combustion network.

(b) Reaction path diagram produced from the Venot planetary network.

Figure 2.13: Comparison of molecular and elemental fluxes for hydrogen in an atmospheric tra-
jectory.
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Chapter Abstract

This chapter highlights work done over the summer to improve Magpie, a thermochemical code
designed to compute equations of state (EOS) for mixed systems. We investigate the effect of
dipoles on the EOS and present a possible correction to magpie to account for dipole effects. It
was found that the presence of a dipole lends to decreased pressure compared with an equivalent
molecule without a dipole. Also, that this influence on the EOS is temperature-dependent, having
lesser effect at high temperatures. We also explored the use of a Bayesian statistical method to
improve the parameters of the model for mixed conditions and to calculate uncertainties in the
parameters. Mapgie simulations using the improved parameters better agreed with experimental
data, as evidenced by χ̄2 analysis. Finally, we present a standardized file format for tabulating
literature EOS data into a script-accessible form which can be used for validation and optimization.

3.1 Introduction

Magpie is a thermochemical equilibrium code developed at LANL which calculates equations of
state (EOS) for high explosive (HE) mixtures. It does this from a statistical mechanics approach,
computing the partition function of the mixture from internal, configurational, and compositional
degrees of freedom (Ticknor et al., 2019)(Leiding et al., 2019). If these various degrees of freedom
are assumed to be independent, the partition function is constructed as a product of the partition
functions of individual species and their constituent degrees of freedom:

Z({Ni}, V, T ) = Π Zi(Ni, V, T ) (3.1)
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The free energy and other thermodynamic variables can then be gleaned from the partition function
and its derivatives. The magpie code can be used to rapidly calculate EOS points and is thus useful
for hydrodynamic simulations.

One of the hardest parts of constructing the partition function is the configurational portion.
It is considered an intractable problem to compute directly. Instead, magpie applies perturbation
theory to the analytically known hard-sphere solution (Ross, 1979)(Change and Sandler, 1994).
However, this restricts it to using spherical potentials such as Lennard-Jones or exponential-6 po-
tentials, and thus it fails to incorporate anisotropic effects such as dipoles or molecular shape. At
high temperature, such as the conditions found shortly after a detonation, a spherical approxima-
tion to anisotropic effects is viable since all molecular orientations are sampled nearly equally. The
positive contributions counteract the negative and the effect is negligible. At lower temperature the
orientation of molecules becomes less random and more correlated, making a static spherical ap-
proximation less accurate. One approach that is currently being explored for magpie is the use of a
temperature-dependent spherical potential, which would account for the shift in average effective
potential as molecular orientation becomes more correlated.

The present work explores the influence of dipoles on the EOS surface using classical molecu-
lar dynamics and then attempts a statistical mechanical treatment of their influence to produce an
effective spherical potential. First, the molecular orientations recorded in MD simulation between
400 and 3000 K are examined directly to study angular correlations between particles, which can
be used to characterize the degree of influence that dipoles might have on EOS calculations that
utilize static spherical potentials. EOS points are then sampled in the range of 400 to 700 K and
densities of 0.1 to 1.0 g/cm3, both with and without consideration of dipole interactions, in order
to quantify their impact on the EOS. The MD results are also compared with magpie predictions
and the effect of a recently developed dipole correction is included. Next, statistical mechanics
is applied to the dipole-dipole configuration space to weight interaction potentials and produce an
average value. The results are shown and limitations are discussed.

In addition to incorporating new effects into magpie, there is still room for optimization of
existing parameters. Magpie is used for systems containing multiple chemical species, but the
parameters used in interaction parameters were often fit using experimental shock data with pure
materials. The Bayesian software package F UNCLE is used to optimize these parameters for
equilibrium calculations.

Last but not least, a new standardized file format is developed for recording experimental and
theoretical EOS data found in the literature. This format, a type of .json file, can be easily read by
scripts and used to programmatically compare model predictions with experimental results. During
the summer we tabulated over 60 sets of literature data into this format.
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3.2 Dipole Interactions
Dipoles add both attractive and repulsive forces to the system. Since the dipole energy is orientation-
dependent, nearby molecules will tend to align. Non-spherical effects cannot currently be ac-
counted for directly in magpie, so it is important to investigate their impact and, if possible, create
spherical approximations that will improve the model.

3.2.1 Dipole Influence based on Molecular Dynamics
The LAMMPS software package (Plimpton et al.) was used to compute thermodynamic states
as a flexible, independent point of reference for magpie at moderate temperatures and pressures.
Importantly, molecular dynamics allows us to selectively apply dipole interactions and measure
their impact on the EOS results. LAMMPS was used to compute thermodynamic states of ammo-
nia (NH3) in the range of 400 to 700 K and 0.1 to 1 g/cm3 both with and without dipole interactions.

VLJ = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(3.2)

Vdd =
1

4πε0

[
1

r3
(di · dj)−

3

r5
(di · r)(dj · r)

]
(3.3)

In these MD simulations ammonia is treated as a spherical particle with a Lennard-Jones po-
tential (3.2) and, optionally, a dipole interaction (3.3). The parameters of the simulation are as
follows:

time step 0.25 fs
time steps 1,000,000
mass 17.031 g/mol
ε 0.283991 kcal/mol
σ 3.51905 Å
dipole 5 ×10−30 C·m
diameter (I) 0.992190 Å

Particles were initialized in a grid, then allowed to evolve for 40,000 time steps under an NVT
thermostat in order to equilibrate to the desired sample temperature. Then the simulation was
switched to energy-conserving time evolution which was used to collect thermodynamic data for
one million steps. Since there were still variations in the temperature during the NVT portion,
the temperature sampled was never exactly the temperature desired. When comparing EOS points
with and without dipole effects, it was necessary to interpolate sampled points in one to produce
the temperature sampled by the other. At the highest densities (0.9, 1.0 g/cm3) the thermostat often
gave points very far from the intended value, thus they were not used for the interpolation and
comparison. The unaltered MD results are shown in Table 3.1 and the relative change in pressure
caused by the dipole (after interpolation) is shown in Table 3.2 in the local appendix (3.6). In this
region the addition of dipole influence lowered the pressure by as much as 30%, with greater effect
at lower temperature. This supports the general knowledge that dipoles add an attractive effect,
and that their effect is temperature-dependent.
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3.2.2 Dipole Correlation
The degree of alignment of dipoles, and thus their impact on the EOS, depends on the relative size
of the interaction energy compared with the thermal energy available. In this context correlation
refers to an increased or decreased likelihood of finding a particle in some orientation when it is
near another particle. Molecular dynamics allows us to explicitly record the orientations of each
particle and thus measure the degree of dipolar alignment with temperature. This subject can
also be addressed from a statistical mechanics approach, and both are done in this section. The
coordinate system used is shown in Figure 3.1.

Figure 3.1: Coordinate system used to measure correlation in dipole orientations (section 3.2.2).
φ is the polar angle of the second particle with respect to the dipole of the first. The azimuthal
angle has no effect. θ is the angle of d2 projected into the plane of d1 and r, and γ is the angle of
d2 out of this plane.

Molecular dynamics with similar parameters as those listed in section 3.2.1 were used to evolve
ammonia molecules with dipole interactions. After equilibration, the position and orientation of
all particles were recorded every 1,000 time steps for a total of 30 snapshots. These data were
then analyzed to record (r, φ, θ, γ) for each particle with respect to every other particle. The result
was nearly 30 million configuration points for a given temperature, though most of these points
had large r. The MD simulation gives position and orientation of a single particle as two vecotrs
(x,d). For any two such pairs (x1,d1) and (x2,d2) the coordinates in Fig. 3.1 were found as
follows:

58
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r = x2 − x1

φ = cos−1(d̂1 · r̂)

n = r̂× d̂1

d2proj = d̂2 − n̂(n̂ · d̂2)

θ = cos−1(d̂1 · d̂2proj)

γ = cos−1(d̂2 · d̂2proj)

Note that the hats represent unit vectors. The above analysis is slightly incorrect, causing a reflec-
tion about φ = π/2 and restricting θ to 0 < θ < π but it worked well enough for illustration. Once
this large set of points has been sampled it can be examined for regions of greater or lesser particle
count to infer dipole influence. For the sake of visualization we examined only the 2D space of
(φ, θ) with γ ≈ 0. In the statistical mechanics solution γ was set explicitly to zero and r = 3.6 Å,
which is near the maximum of the radial distribution function. However, due to the finite number
of particles in the MD data we allowed all particles with r < 4 Å and γ < 20◦. The counts were
binned into 2D heatmaps which are shown in Figure 3.3 along with the statistical mechanical result.

For the statistical mechanics approach, the interaction potential is first rewritten for the condi-
tion γ = 0. In this case equation (3.3) becomes:

Vdd(r, φ, θ) =
1

4πε0

d1d2

r3
[cos θ − 3 cosφ cos(φ− θ)] (3.4)

Figure 3.2: Heatmap showing the normalized dipole interaction potential for θ and φ when γ = 0.
This has been modified to reflect the incorrect angles form the MD analysis for the purpose of
comparison.
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Note that because of the erroneous angle conversions when processing the MD points, the
potential was made symmetric about φ = π/2. With this interaction potential we can apply a
probability using statistical mechanics.

Z =

∫ π

0

dφ

∫ π

0

dθ sinφ

[
exp

(
−Vdd(r, φ, θ)

kBT

)]
(3.5)

p(φ, θ) = sinφ
exp(−Vdd(r, φ, θ)/kBT )

Z
(3.6)

Finally, the probabilities computed this way had a Gaussian noise added to make them directly
comparable to the MD results. The MD and statistical mechanics results appear to agree well,
qualitatively. To make a quantitative comparison, the RMS deviation from the ideal gas behavior
(i.e. a uniform heatmap) was computed. The results for each approach are shown in Figure 3.4.

Figure 3.3: Dipole angular correlation results. First row: angular correlation counted from MD.
Second row: statistical mechanics calculation. For these plots a sin θ (volume element) normaliza-
tion was applied to make the trend clearer.

Figure 3.4: RMS deviation from ideal gas behavior as counted from MD and as calculated from
statistical mechanics. The nonzero asymptote is due to noise from counting in a finite simulaiton.

60



3.2. DIPOLE INTERACTIONS

3.2.3 Dipole Effective Spherical Potential

Dipoles add both attractive and repulsive forces to the system. Since Magpie uses spherical po-
tentials, a natural question to ask is whether, at a given radius, the dipole interactions across all
orientations can be averaged into a single value. In general the molecules will prefer to align in an
attractive manner, so we expect a negative shift to the energy, but as we have seen the degree of
alignment is temperature-dependent. If we assume the dipole orientation is independent from the
rest of the system degrees of freedom this problem is tractable.

P1

P2

proj

Figure 3.5: Coordinate system used to integrate over orientations of two dipoles with respect to
each other. θ and φ define the polar and azimuthal position of particle 2 with respect to a fixed d1

while γ and α define the polar and azimuthal orientation of d2 with respect to d1 and the projection
of r orthogonal to d1. Note that φ is a redundant variable as there is rotational symmetry about d1,
but for a rigorous treatment it is still part of the configuration space. Also note that this coordinate
system is different from the one used in section 3.2.2.

The partition function spans a four-dimensional space corresponding to two sets of spherical
coordinates describing the orientations of each dipole. (Or, as drawn in Figure 3.5, the position of
the second particle relative to the axis defined by the first dipole). In these coordinates, the energy
of the dipole interaction defined in Eq. (3.3) becomes

Vdd =
1

4πε0

d1d2

r3

[
cos γ − 3 cos θ

(
sin θ sin γ cosα + cos θ cos γ

)]
(3.7)

where

d1 · d2 → cos γ

d1 · r → cos θ

d2 · r → cos θ cos γ + sin θ sin γ cosα
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We can define the dipole denergy scale as

Edipole ≡
1

4πε0

d2

r3

then the value of Vdd always falls somewhere in the range of ±2Edipole . The Boltzmann factor for
an orientation is

f = exp

(
−Vdd(r, φ, θ, α, γ)

kBT

)
(3.8)

and the partition function is then:

Z =

∫ 2π

0

dφ

∫ π

0

dθ

∫ 2π

0

dα

∫ π

0

dγ sin θ sin γ
[
eVdd/kBT

]
(3.9)

The average interaction potential is the integral of the potential weighted by its Boltzmann factor:

Veff(r, T ) =

∫ 2π

0

dφ

∫ π

0

dθ

∫ 2π

0

dα

∫ π

0

dγ sin θ sin γ

[
eVdd/kBT

Z
Vdd(r, φ, θ, α, γ)

]
(3.10)

The energy of the dipole interaction only requires three angles to be described fully. Angle φ
plays no role in the result except to change the normalization by 2π and so can be dropped from
the integrals without effect. Using a dipole moment of d = 5× 10−30 C·m, the resulting potential
for NH3 is shown in Figure 3.6. The potential shift is shown on its own, and as applied to the
Lennard-Jones potential used in Section 3.2.1. We see that higher temperatures create a smaller
effect, while lower temperature create a stronger shift approaching a maximum value of 2Edipole.
As a fraction of the LJ energy minimum, this shift ranges from small at 3000 K (2%) to substantial
at 400 K (14%).

T=0 limit
400 K

3000 K

Figure 3.6: Effective potential produced by Equation (3.10) for NH3. The right-hand plot shows
the potential added to a Lennard Jones potential.

We can see in Figure 3.6 that the effective potential as a fraction of the dipole energy changes
with decreasing radius. In other words, the dipole energy increases while the thermal energy
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stays fixed. Plotting this ratio for the 3000 K case in Figure 3.7 we see a familiar curve which
is reminiscent of the Boltzmann factor for a fixed energy versus temperature. If this curve can
be approximated without doing the integrals it might be more computationally efficient. Equation
(3.11) was found to produce a good approximation, but it is not exact:

Veff ≈ −2Edipole

[
1− exp

(
−1

3

Edipole

kBT

)]
(3.11)

The error of the approximation in (3.11) is shown in Figure 3.8.
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Figure 3.7: Effective dipole potential and an approximation of this divided by dipole energy scale
for different radii at T=3000 K.
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Figure 3.8: Error of approximation in Eq. (3.11) for temperatures in the range of 400 to 3000 K.
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In deriving Eq. (3.10) it was assumed that the dipole configuration was independent of other
aspects of the system. In reality, this result must break down at lower temperature. The Boltzmann
factors from this analysis can assign highly-concentrated occupation to certain angles which in
practice could not be realized due to crowding. At T=0 the effective potential would imply that
every dipole in the system was stacked head-to-tail in a one-dimensional chain, which is clearly
incorrect. One can compute the angular density (fraction of particles in a steradian) by integrating
the Boltzmann factors over α and γ only:

σ(r, θ) =

∫ 2π

0

dα

∫ π

0

dγ sin γ

[
eVdd/kBT

Z

]
(3.12)

This represents what fraction of the particles in an infinitesimal shell at r will be found per unit
steradian in any given direction (θ, φ). If multiplied by a number of particles it becomes unitful.
The typical shape of this distribution is shown in Figure 3.9. While this is a useful quantity, it is
still difficult to know what value is too large. A qualitative upper limit might be the angular density
of a single particle, since exceeding this value implies overlapping particles. At an intermolecular
separation r and a molecular radius r∗ the angular density (particles per steradian) of an individual
molecule is roughly:

σ∗(r) =
r2

πr∗2
(3.13)

For instance, if an ammonia molecule has an effective radius of 1.3 Å and is located 2.6 Å away,
its angular density is about 1.27 molecules per steradian. (This implies a coordination number of
∼ 16 which is an overestimate.) If this number is exceeded then there will be inaccuracy due to
crowding. In an ideal gas the number of particles expected in a spherical shell is ρπr2dr. For a
shell of thickness r∗ centered at r, the number of particles in the shell is about

Number in shell ∼ ρ
4

3
π
[
(r − 1

2
r∗)3 − (r + 1

2
r∗)3

]
For example, at a density of 0.5 g/cm3 with the same r∗ and r, this gives 2 particles in the shell.
This number, multiplied by the fraction plotted in Figure 3.9 gives the number of particles per
steradian. This value exceeds σ∗ for temperatures below 800 K even before modification of g(r).
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Figure 3.9: Angular concentration for temperatures between 300 and 3000 K at a separation of
2.6 Å. Smaller radii lead to greater angular concentration.
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With this overestimation of angular population in the lower energy regions we would expect this
calculation to overestimate the effective potential shift, especially at lower temperature. Magpie
was run with tabulated potentials similar to Fig. 3.6 calculated using this technique. These, along
with the MD results from section 3.2.1, are plotted in Figure 3.10. We see that it indeed overshoots
the pressure correction, particularly at 400 K, but the similarity in shape to the MD dipole shift is
promising.
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Figure 3.10: Comparison of results from molecular dynamics, magpie using Lennard-Jones, and
magpie using Lennard-Jones and effective dipole potential.
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3.3 Parameter Optimization using F UNCLE
F UNCLE uses Bayesian methods to fit a given physics model to multiple sets of experimental
data simoultaneously. A Bayesian approach also allows for calculating the variances and associ-
ated covariances in the optimized parameters. Until now, F UNCLE has only been applied us-
ing psuedo-experimental data. However, when tested against optimizations using Markov Chain
Monte Carlo, F UNCLE produced comparable results and required less computation (Andrews and
Fraser, 2019). The following section provides the motivation and basic overview of F UNCLE’s
optimization method (for a more detailed discussion, see (Andrews and Fraser, 2019)) as well as
a summary of our results for optimizing the interaction potential parameters for simple chemical
mixtures.

3.3.1 Optimization method
For a set of model parameters θ and experimental data Y , Bayes’ theorem is expressed as

log
(
P (θ|Y)

)
= log

(
P (θ)

)
+ log

(
P (Y|θ)

)
− C, (3.14)

where log(P (Y|θ)) is the posterior probability, log(P (θ)) is the prior probability, log(P (Y|θ))
is the likelihood, and C is a constant, independent of the model parameters and unnecessary for
the optimization. F UNCLE seeks the optimal parameters θ∗ such that

θ∗ = argmaxθ(log(P (θ|Y))). (3.15)

To find θ∗, the posterior probability distribution is expanded about a small step η applied to the
vector of model parameters, θ:

log(P (θ + η|Y)) = log(P (θ|Y)) + η
∂log(P (θ|Y))

∂η
+
η2

2

∂2log(P (θ|Y))

∂η2
+O(η3). (3.16)

Thus, the optimzation problem from 3.15 becomes

η∗ = argmaxη(log(P (θ + η|Y))), (3.17)

where
θ∗ = θ + η∗. (3.18)

To arrive an at explicit expression for the posterior probability from equation 3.16, we need to
derive expressions for the prior and likelihood distributions, which for convenience, F UNCLE
assumes to be multivariate Gaussian distributions .
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Likelihood Distribution

The likelihood distribution represents the probability that the experimental data is correlated with
the physics model. For Y compiled from k sets of experimental data y, independent of the model
parameters θ, the full likelihood distribution is obtained by summing the contributions of each y:

log(P (Y|θ)) =

nk∑
k=1

log(P (yk|θ)). (3.19)

To compute each term in the right-hand sum of equation 3.19, some function µk is required to
map the model parameters to the coordinates of the data. µk is defined by the conditions

µk(θ + η) = µk(θ) + η
∂µk
∂θ

+O(η2) (3.20)

and
yk = µk(θ) + rk, (3.21)

where rk is a variable indepedant of θ and has mean zero, such that

rk ∼ N (0,Σk), (3.22)

where Σk is the covariance matrix of the data. Thus, assuming the experimental data can also be
modeled as a Gaussain

yk ∼ N (µk(θ),Σk), (3.23)

from equations 3.21 and 3.22, the likelihood for each yk is defined as

log(P (yk|θ)) = −1

2
(yk − µk(θ))TΣ−1

k (yk − µk(θ)) + Ck, (3.24)

where Ck is a normalization constant, unnecessary for the optimization. Using equation 3.3.1 in
equation 3.19 obtains the likelihood, log(P (Y|θ)), for equation 3.14.

Prior Probability Distribution

The prior probability represents our confidence in the model before considering experimental data.
Similar to how we obtained an expression for the likelikhood distribution, if θ is assumed to be
modeled by a Gaussain

θ ∼ N (µθ,Σθ), (3.25)

where Σθ represents the uncertainty in the prior parameters and µθ is a vector representing our
prior knowledge of what the parameters should be, the prior probability distribution can be written
as

log(P (θ)) = −1

2
(θ − µθ)TΣ−1

θ (θ − µθ) + Cθ, (3.26)

where Cθ is a normalization constant, unneccesary for the optimization.
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Posterior Probability

The posterior probability is the probability that our model represents the data. Substituting expres-
sions for the likelihood and prior distributions from equations 3.19 and 3.3.1 and equation 3.26,
respectively, into equation 3.14 and then taylor expanding as in equation 3.16 gives an expression
for the posterior probability:

log(P (θ + η|Y)) =− 1

2
ηT
( nexp∑
k=1

(DT
kΣ
−1
k Dk) + Σ−1

θ

)
η

+
(( nexp∑

k=1

((yk − µk(θ))TΣ−1
k Dk)

)
+ (θ − µθ)TΣ−1

θ

)
η,

(3.27)

where Dk is the sensitiviy matrix of the model, obtained by evaluating the sensitivity of the simu-
lation to all model parameters about the point θ.

3.3.2 Physical Constraints
When using F UNCLE, it is often necessary to impose unique constraints on the optimization
to maintain the physicality of the parameters for a specific model. In F UNCLE, contraints are
implimented in the form

Gη � h, (3.28)

where H and h are normalized such that h is unit-length.

In this section, we are considering the exponential-6 potential:

φ(r) = ε
[ 6

α− 6
exp[α(1− r/r∗)]−

( α

α− 6

)(r∗
r

)6]
, (3.29)

where r is the distance between atoms, r∗ determines the position of the minimum potential, and
ε and α determine the depth and steepness, respectively, of the potential well. In our optimization,
θ is a vector of parameters containing r∗, ε, and α for each chemical species. These parameters
cannot be negative, i.e. θ∗ ≥ 0, so we constrain θ in the optimization such that

θ∗ ≥ 0

θ∗ = θ + η

↓
θ + η ≥ 0

η ≥ −θ
−η ≤ θ.

(3.30)

The final inequality from 3.30 is substituted into 3.28, and thus the pre-normalized G and h that
satisfy the contraint are

G = −I3

h = [θ]3×1.
(3.31)
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3.3.3 Results

We used F UNCLE to optimize the interaction potential parameters for two chemical mixtures:
H2 in equilibrium with H and O2 in in equilibrium with O. Hugoniot simulations from Magpie
were compared to experimental shock Hugoniot data. The Hugoniot describes the thermodynamic
properties across a shock front. Shock wave compression is approximately adiabatic, so for a
given initial state (ρ0, p0, T0), the pressure and density of the material across the shock front can be
related to the shock velocity (us) and the particle velocity (up) using conservation of momentum
and mass. Conservation of energy can be used to calculate an EOS for the material. The principle
Hugoniot is the locus of all final states (ρ, p, T ) that can result from a single initial shock. In shock
Hugoniot experiments, us and up are the directly measured quanities and therefore preferrable to
use at variables in the optimization. However, for sources that do not report us and up, calculated
values p and specific volume, v, reported by the source were used. Because F UNCLE considers
multiple sets of experimental data, corresponding individual physics models must be defined for
each yk. In our case, the different physics models are Hugoniots generated using the specific initial
state for each experiment. A physics model in F UNCLE can be defined to take any nature of
variables, requiring generally an independent variable, a dependent variable, and the associated
uncertanties in the dependent variable, i.e. each yk is not required to be of the same type of data;
provided each model depends on the same θ, equation 3.19 is valid. Thus, we can combine p − v
and us − up data sets to optimize the same θ. For sources that do not report uncertanties, a 10%
uncertainty in the dependant variable is assumed.

Figure 3.11: Optimization results for H2 in equilibrium with H. Comparison of Magpie simulations
with initial and optimal parameters with experimental data. Simulations were run over a pressure
range of 1-60 GPa. The plotted curves are means of all splines, using either the optimal or initial
parameters, of Hugoniots generated with v0 for each experiment: 14.245 cm3/g, (Marsh, 1980),
14.108 cm3/g (Nellis et al., 1983), 13.973 cm3/g (Dick and Kerley, 1980), and 13.158 cm3/g (Sano
et al., 2011). Optimization for each data set used us − up data.
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Figure 3.12: Optimization results for O2 in equilibrium with O. Comparison of Magpie simulations
with initial and optimal parameters with experimental data. Simulations were run over a pressure
range of 10-80 GPa. The plotted curves are means of all splines, using either the optimal or initial
parameters, of Hugoniots generated with v0 for each experiment: 0.835 cm3/g (Hamilton et al.,
1988), 0.832 cm3/g (Marsh, 1980), and 0.832 cm3/g (Nellis and Mitchell, 1980). Optimizations
for (Marsh, 1980) and (Nellis and Mitchell, 1980) used us−up data and for (Hamilton et al., 1988)
used p − v. Simulation results were plotted against the reported p − v data from each source for
visual comparison.

Figures 3.11 and 3.12 show the results for the H2 and O2 optimizations, respectively. Using the
optimized parameters versus initial parameters resulted in reductions in the χ̄2 of 2.82 to 1.51 for
H2 and 1.69 and 1.16 for O2, showing that the optimization with F UNCLE produces significantly
better agreement between Magpie simulations and experiment.

3.3.4 Uncertainty calculation
F UNCLE computes the covariance matrix of the posterior probability as

Σp =
( nk∑
k=1

Jk + Σ−1
θ

)−1

. (3.32)

Jk are the Fisher information matrices, defined as

Jk = D−1
k Σ−1

k Dk, (3.33)

for each yk. The Fisher information encodes how tightly each parameter in the model is constrained
by the experiment. Σp is a symmetric, positive-semidefinite matrix for which the diagonal terms
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are the variances in the each parameter - defined as (σ)2 - and the off-diagonal terms are the
covariances - representing how strongly the corresponding parameters are coupled. We computed
the covariance matrices for both our H2 and O2 optimizations, figure 3.13.

(a) (b)

Figure 3.13: Heat-map plots of the normalized covariance matrices for H2 (a) and O2 (b). For
both, the variances and covariances of the ε and α parameters were greater that those for the r∗

parameters, suggesting that ε and α are more relevant to the optimization.

3.4 Tabulation of Literature Data
Validation and optimization of Magpie’s performance requires comparison with experimental and
computational work from external sources. Unfortunately, such data often comes in formats which
are not easily accessible to scripts, and even those which are accessible vary in their format. We
developed a file format (a ‘.json’ structure) which makes EOS data easy to read programmatically,
then incorporated over 60 literature sources into this format. Types of data included shock data,
PVTx measurements, and ab initio simulation data on material systems such as H2O, CO2, NH3,
and H2O/CO2 mixtures. The file structure was designed to allow a script to identify what specie(s)
are represented, what variables are measured, and what domain the data covers.

An example file, containing PVTx measurements on water-carbon dioxide mixtures, is shown
below. All files start with a parent object named ‘EOS Data’. Inside this object are basic informa-
tion about the data, such as the literature source, what chemical species are addressed, and what
phases are represented in the data. Lastly, there is a ‘Variables’ object which contains all of the
variables measured and their data. A single EOS datum represents a thermodynamic equilibrium
state which consists of a set of values for some number of variables. For instance, the pressure,
volume, and temperature of a material. If chemical equilibirum is also considered, it may entail
additional variables. Since the set of variables measured is not always the same, the variable struc-
ture is a list of variables which each has a one-dimensional array of values. The i-th element of an
array corresponds to the i-th EOS point of the data. The variables always include a phase variable,
where each element contains a list of (the indices of) all phases in equilibrium, though this may
not be known. The indices correspond to the list of phases in the main body. If there are more
than one species involved, an additional composition variable is added for each species. Lastly, an
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array for the uncertainty in the values of each element of the main data array is also included. If
the uncertainty information isn’t available it is replaced with the string ‘missing’.

example.json
{"EOS Data": {

"Format Version": 1,
"Comments": "Experimental PVTx measurements from Table 1.",
"Number of Species": 2,
"Chemical Species": ["H2O","CO2"],
"Phases": ["unknown","fluid","Ice Ih"],
"Literature Source": {

"Title": "Thermische Eigenschaften überkritischer Mischungen von Kohlendioxyd und Wasser bis zu 750 C und 2000 Atm",
"Authors": "E.U. Franck, K. Todheide",
"Year": "1959",
"Journal": "Zeitschrift für Physikalische Chemie",
"Volume": "22",
"Page": "232-245",
"DOI": "10.1524/zpch.1959.22.3_4.232",
"URL": "https://doi.org/10.1524/zpch.1959.22.3_4.232"

},
"Variables": {

"Phase": {
"Data": [ [1,2], [0], [1], ...]

},
"P": {

"Units": "MPa",
"Range": [30.0,200.0],
"Data": [40.0, 50.0, 60.0, ...],
"Uncertainty": [...]

},
"T": {

"Units": "K",
"Range": [673.15, 1023.15],
"Data": [673.15, 673.15, 673.15, ...],
"Uncertainty": [...]

},
"V": {

"Units": "cm3/g",
"Range": [1.2858348, 6.67678918],
"Data": [3.39250249, 2.83225288, 2.45154272, ...],
"Uncertainty": "missing"

},
"x H2O": {

"Range": [0.2, 0.8],
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"Data": [0.2, 0.2, 0.2, ...],
"Uncertainty": "missing"

},
"x CO2": {

"Range": [0.2, 0.8],
"Data": [0.8, 0.8, 0.8, ...],
"Uncertainty": "missing"

}
}

}
}

3.5 Conclusion

The effect of dipoles was found to be temperature-dependent. The tendency is for dipoles to align
in a low-energy configuration, thus creating an on-average attractive potential, but the degree of this
alignment depends on the relative energy scale of the dipole versus the thermal energy available.
At high temperature the alignment is nearly random and has nearly no effect on the interaction
potential. The attractive shift to the potential leads to a lowering of the equilibrium pressure for
a given temperature and density. An analytical calculation of the effective spherical potential of
dipole interactions was presented, though it appears to overestimate the attractive nature due to an
unrealisticly large fraction of particles occupying a small angular space.

We used F UNCLE to optimize exponential-6 interaction potential parameters for mixtures of H2

in equilibrium with H and O2 in in equilibrium with O. We did so by comparing Mapgie Hugoniot
simulations to multiple sets of experimental data, and for both cases, the optimization produced
better agreement with experiment, as evidenced by reductions in the χ̄2 of 2.82 to 1.51 and 1.69
to 1.16 for H2 and O2, respectively. We also computed the covariance matrices, and for both opti-
mizations, the ε and α parameters were shown to be the most relevant to the optimization. Future
work includes using the optimized parameters for H2,O2,H, and O in optimizations for more com-
plex mixtures, such as H2O + CO2, as well as determining the uncertainites in the EOS for these
mixtures by propogating forward the uncertanties computed in the covaraince matrices.

D. Keith Coffman received his dual B.S. degrees in Physics and Materials Science at the Geor-
gia Institute of Technology. He is now entering a Ph.D. in Materials Science at the University of
Illinois Urbana-Champaign.

John A. Freiberg received a B.A. in Physics and a B.M. in Horn Performance at Oberlin
College and Conservatory. He will be starting a post-bachelors internship with the Physics and
Chemisty of Materials (T-1) group at Los Alamos National Laboratory.
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3.6 Appendix

Figure 3.14: Comparison of MD results with and without dipole interactions included.
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Table 3.1: Thermodynamic output of MD simulations described in section 3.2.1 both with and
without dipole interactions.

Ttarget (K) ρ (g/cm3) TMD (K) PMD (MPa) TMD+ (K) PMD+ (MPa)
400 0.1 394 0.02 403 0.02
400 0.2 417 0.05 403 0.03
400 0.3 406 0.08 387 0.06
400 0.4 407 0.16 404 0.13
400 0.5 395 0.32 400 0.26
400 0.6 408 0.67 391 0.55
400 0.7 397 1.29 390 1.13
400 0.8 371 2.31 390 2.18

450 0.1 497 0.03 460 0.02
450 0.2 444 0.05 456 0.04
450 0.3 430 0.09 442 0.08
450 0.4 446 0.19 448 0.15
450 0.5 445 0.37 454 0.32
450 0.6 448 0.73 448 0.65
450 0.7 440 1.38 438 1.25
450 0.8 451 2.56 455 2.40

500 0.1 492 0.03 502 0.02
500 0.2 509 0.06 511 0.05
500 0.3 496 0.11 491 0.09
500 0.4 486 0.21 496 0.18
500 0.5 499 0.42 498 0.36
500 0.6 491 0.80 488 0.71
500 0.7 515 1.55 491 1.37
500 0.8 508 2.74 497 2.53

600 0.1 617 0.03 601 0.03
600 0.2 603 0.08 598 0.07
600 0.3 564 0.13 589 0.13
600 0.4 594 0.27 592 0.24
600 0.5 620 0.53 606 0.47
600 0.6 587 0.94 588 0.85
600 0.7 603 1.73 591 1.59
600 0.8 595 2.99 594 2.82

700 0.1 696 0.04 692 0.04
700 0.2 677 0.09 697 0.08
700 0.3 679 0.17 698 0.16
700 0.4 670 0.31 674 0.29
700 0.5 686 0.59 694 0.55
700 0.6 670 1.05 703 1.02
700 0.7 711 1.94 698 1.80
700 0.8 702 3.28 698 3.12
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Table 3.2: Difference in pressure between MD results with and without dipole interactions. The
non-dipole data was interpolated for direct comparison with the points sampled in the dipole runs.

TMD+ (K) ρ (g/cm3) PMD (MPa) PMD+ (MPa) % reduction
403 0.1 0.02 0.02 26.4
403 0.2 0.04 0.03 26.3
387 0.3 0.07 0.06 30.7
404 0.4 0.16 0.13 28.9
400 0.5 0.32 0.26 22.7
391 0.6 0.66 0.55 19.8
390 0.7 1.28 1.13 12.9
390 0.8 2.18 2.18 0.0

460 0.1 0.02 0.02 12.8
456 0.2 0.05 0.04 18.8
442 0.3 0.09 0.08 24.5
448 0.4 0.19 0.15 23.0
454 0.5 0.38 0.32 18.3
448 0.6 0.74 0.65 14.0
438 0.7 1.38 1.25 10.5
455 0.8 2.59 2.40 8.0

502 0.1 0.03 0.02 8.3
511 0.2 0.06 0.05 14.2
491 0.3 0.11 0.09 19.0
496 0.4 0.22 0.18 18.7
498 0.5 0.42 0.36 15.5
488 0.6 0.80 0.71 12.4
491 0.7 1.51 1.37 10.0
497 0.8 2.74 2.53 8.2

601 0.1 0.03 0.03 0.1
598 0.2 0.08 0.07 10.6
589 0.3 0.14 0.13 12.1
592 0.4 0.27 0.24 13.0
606 0.5 0.52 0.47 12.1
588 0.6 0.94 0.85 9.5
591 0.7 1.65 1.59 4.2
594 0.8 2.95 2.82 4.3

692 0.1 0.04 0.04 8.3
697 0.2 0.10 0.08 13.8
698 0.3 0.18 0.16 9.1
674 0.4 0.31 0.29 10.1
694 0.5 0.61 0.55 10.4
703 0.6 1.20 1.02 18.0
698 0.7 2.18 1.80 20.8
698 0.8 3.92 3.12 25.6

76



BIBLIOGRAPHY

Bibliography
Stephen A. Andrews and M. Andrew Fraser. Estimating physics models and quantifying their

uncertainty using optimization with a bayesian objective function. Journal of Verification, Vali-
dation and Uncertainty Quantification, 2019.

Jaeeon Change and Stanley I. Sandler. A real function representation for the structure of the hard-
sphere fluid. Molecular Physics, 81(3):735–744, 1994.

R. D. Dick and G. I. Kerley. Shock compression data for liquid hydrogen ii. The Journal of
Chemical Physics, 1980.

D. C. Hamilton, W. J. Nellis, A. C. Mitchell, F. H. Ree, and M. van Thiel. Shock-compression of
liquid oxygen. The Journal of Chemical Physics, 1988.

J. A. Leiding, R. B. Jadrich, C. Ticknor, and S. A. Andrews. Reactive monte carlo validation of
thermochemical equations of state. AIP Conf. Proc., Submitted, 2019.

S. Marsh. Lasl shock hugoniot data. University of California Press, 1980.

W. J. Nellis and A. C. Mitchell. Shock compression of liquid argon, nitorgen, and oxygen to 90
gpa. The Journal of Chemical Physics, 1980.

W. J. Nellis, A. C. Mitchell, M. van Thiel, G. J. Devine, and R. J. Trainorand N. Brown. Equation
of state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 gpa.
The Journal of Chemical Physics, 1983.

Steve Plimpton, Aidan Thompson, Stan Moore, Axel Kohlmeyer, and Richard Berger. LAMMPS
molecular dynamics simulator. URL https://lammps.sandia.gov/.

Marvin Ross. A high-density fluid-perturbation theory based on an inverse 12th-power hard-sphere
reference system. J. Chem. Phys., 71:1567, 1979.

T. Sano et al. Laser-shock compression and hugoniot measurements of liquid hydrogen to 55 gpa.
Physical Review B, 2011.

C. Ticknor, S. A. Andrews, and J. A. Leiding. Magpie: a new thermochemical code. AIP Conf.
Proc., Submitted, 2019.

77

https://lammps.sandia.gov/


BIBLIOGRAPHY

78



Chapter 4

Numerical Integration of Non-Functions for
Turbulence Applications

Team Members
Dorianis M. Perez and Benjamin Hellwig

Mentors
Jesse Canfield and Susan Kurien

Chapter Abstract

We present a numerical method to find the area under the interface in the Rayleigh-Taylor instabil-
ity problem, specifically when the interface begins to fold over on itself and become a non-function.
Our goal was to develop an integration scheme in FORTRAN that would effectively calculate this
area. We tested our scheme with several other functions and non-functions with analytical solu-
tions to verify that the solutions converged. We used the area calculations to calculate the volume
fractions of both fluids within a grid and then utilized these volume fraction calculations in the
computation of initial conditions for the Besnard-Harlow-Rauenzhan (BHR) turbulence model.
These values were calculated using the algebraic expressions reformulated by Rollin and Andrews
(2013). The mixing width growth through time was also compared to experimental studies.

4.1 Introduction
The Rayleigh-Taylor instability (RTI) is a classical physics problem in fluid dynamics. This insta-
bility is characterized by the suspension of a heavier, or more dense, fluid, f2, over a less dense
fluid, f1, in a gravitational field. RTIs are observed in multiple applications of oceanography, as-
trophysics, and manufacturing and are a good tool for studying turbulence model initiation. At the
fluid-fluid interface, small initial perturbations grow larger with time. These perturbations grow
first in amplitude before they begin to resemble a series of connected S-shaped curves; eventu-
ally, the fluids disperse into a mushroom-like shape that evolves into turbulent, diffuse clouds with
vortex formations.
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In order to generate the non-function interface, we apply two-fluid Euler equations for incom-
pressible, inviscid flow

ρ
(
ut +

(
u · ∇

)
u
)

+∇p = −gρe2 (4.1)

∇ · u = 0 (4.2)

where u = (u1, u2) is the velocity vector field of the fluid, p is the scalar pressure function, ρ is the
density, g is the acceleration,∇ = (∂x1 , ∂x2) is the gradient vector, and e2 = (0, 1).

We also assume the fluid is irrotational, so for the vorticity, ω, we have

ω := ∇× u = 0 (4.3)

where∇× u = ∂1u2 − ∂2u1.
The two fluids with densities ρ+ and ρ− lie above and below the interface, respectively.
We consider the z-model formulated by Granero-Belinchón and Shkoller (2017) that does not

restrict the interface solely to amplitude growth but allows for interface turnover. This parametric
model for the interface z(α, t) is defined by the following set of equations(

δz1

)ε
t

= −1

2
H$ε ∂αz

ε
2

|1 + ∂αδzε1, ∂αz
ε
2|2

+ ε∂2
αδz

ε
1 (4.4)

(
z2

)ε
t

=
1

2
H$ε 1 + ∂αδz

ε
1

|1 + ∂αδzε1, ∂αz
ε
2|2

+ ε∂2
αz

ε
2 (4.5)

$ε
t = −∂α

(
A

2

1

|1 + ∂αδzε1, ∂αz
ε
2|2
H($εH$ε)− 2Agzε2

)
+ ε∂2

α$
ε (4.6)

where α and t are independent variables with respect to position and time, z1 is the horizontal trans-
lation of points (these z1 values should initially all be zero at t = 0 before the initial perturbations
along the interface evolve), z2 is the vertical height of the data points (these should be initialized
as a function of independent variable α when t = 0), A = ρ+−ρ−

ρ++ρ−
is the Atwood number, H is

the Hilbert transform, and $ is the amplitude of the vorticity (Rafael Granero-Belinchón, 2017).
In this model, the vorticity, ω, is compactly supported on the interface and has amplitude equal to
the negative of the jump in tangential velocity on the interface. An artifical viscosity term, ε∂2

α,
deals with small-scale noise. This system of equations can be solved with a Fourier collocation
(pseudospectral) method combined with a fourth order Runge-Kutta time stepping scheme.

BHR models are a type of Reynolds Averaged Navier-Stokes (RANS)-based simulations that
model turbulence in a system. The BHR model uses RANS equations to describe the physics of
compressible, turbulent flows in miscible fluids with variable density (B. Rollin, 2013). This model
requires several input parameters to initialize, including the turbulent length scale, S, turbulent ki-
netic energy, K, mass flux velocity, a, and the density-specific volume correlation, b = −

〈
ρ
′
v
′〉w

where ρ is the density and v = 1
ρ

is the specific volume. The mass flux velocity is defined as

a =
(
−
〈
u
′′

1

〉
,−
〈
u
′′

2

〉
,−
〈
u
′′

3

〉)
(4.7)

where u′′1 , u
′′
2 , u

′′
3 are the Favre-averaged fluctuating velocity components.
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In order to initialize the BHR model with the appropriate values for each parameter, the volume
fractions of the heavier and lighter fluids must be known. We present an integration scheme that
allows us to calculate the area of the lighter fluid below the interface within a grid of interest; this
area consequently allows us to calculate the volume fractions of both fluids.

4.2 Methods
The z-model formulation allows for time evolution of the interface where we observe interface am-
plitude growth (Figure 4.1b) and, at later times, interface turnover (Figure 4.1c). Finding the area
under the interface when it is a function is straightforward using numerical integration methods.
However, once the interface begins to roll over on itself and become a non-function, special con-
siderations need to take place in order to accurately calculate the area. We developed a numerical
method to integrate the curve at all time levels (assuming the interface remains a simple curve).

(a) (b)

(c) (d)

Figure 4.1: Interface time evolution. a) Initial interface perturbation b) Interface amplitude growth
c) Interface turnover at late times d) Area of less dense fluid beneath interface

One way to find the area beneath the interface (Figure 4.1d) is to first locate all of the positions
along the interface where dz2

d(x+z1)
= 0. In other words, search for all of the vertical tangents along

the interface. These vertical tangents are approximated by locating the discrete points where the
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value x + z1 goes from increasing to decreasing or vice versa. The vertical tangents are then
sorted in order by increasing domain value (as some points will have rolled around and gone in the
negative x + z1 direction) and divide the domain into intervals of integration with these vertical
tangents as endpoints. Next, shift the function so z2 ≥ 0 for all values of z2. Subtracting the
minimum z2 value over the interface domain from each data point’s z2 value accomplishes this.
All integrals are calculated from left to right along the located curves. In each interval, identify
and flag the curves that are present, depending on whether x(i + 1) + z1(i + 1) − x(i) − z1(i) is
greater than or less than zero along the length of the curve. If the corresponding values are greater
than zero, add the positive value of the integral to the total integral; otherwise, add the negative
value of the integral to the total integral (in effect, this is an area between two curves calculation).
In instances where there are no points within the interval, i.e. two vertical tangents are directly
next to one another, or when the endpoints of a curve do not line up with the endpoints of an
interval, a simple interpolation is performed to define a new data point. The trapezoidal rule is
then implemented in each interval to calculate the area and then summed to find the cuno, not on
the road)mulative integral under the entire interface.

A simpler method is to just use the standard trapezoid rule. Shifting the interface by subtract-
ing the interface’s minimum z2 value from each data point’s z2 value and then implementing the
trapezoid rule for functions accomplishes everything from the above algorithm (if x(i) + z1(i) is
decreasing between two successive indices, then the ∆(x + z1) value in the trapezoid approxima-
tion will be negative, so there is no need to integrate from left to right and then negate the value
since the standard trapezoid method will automatically produce this same negative value). Given
a set of data points indexed from 1 and of total quantity Nx, the following pseudocode finds a
numerical approximation for the total area of lighter fluid beneath the interface:

integral = 0
minZ2 = z2(1)
Do i = 2 to Nx

If z2(i) < minZ2
minZ2 = z2(i)

Do i = 1 to Nx - 1
integral = integral

+ (0.5)*(z2(i+1) + z2(i)
- 2*minZ2)*(x(i+1)+z1(i+1)-x(i)-z1(i))

The volume fraction for the less dense fluid is then calculated by dividing the total integral by
the area of the grid ([max z2 −min z2] ∗ [max(x+ z1)−min(x+ z1)]). The volume fraction of
the heavier fluid is then easily computed, and these volume fractions can then be used to directly
calculate the BHR model initial conditions.

4.3 Results
In order to confirm the consistency and reproducibility of the integration scheme, we performed
several spatial convergence tests with functions whose analytical solutions are known, as well as
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with the interface evolution code. We also tested convergence for a multimode case, where the
initial conditions were set to higher than two modes. Mixing width as a function of time was also
considered and compared to findings from an experimental study by Waddell et al. (2001). BHR
variables were computed directly from the formulations in Rollin and Andrews (2013). These
results are presented in the following subsections.

4.3.1 Spatial Convergence Studies
Interface Evolution Code

A spatial convergence study using the interface evolution code for a single mode was performed
at several grid resolutions and converged to approximately 33.53cm2 (Figure 4.2, Table 4.1). After
reformulating the grid refinement ratio to be 2, the order of convergence was -2.0042. For this
case, we do not have a theoretical rate of convergence because the analytical solution is unknown.

Figure 4.2: Convergence of area with higher grid resolution

Number of data points Result (cm2)
128 33.600926
256 33.547136
384 33.537225
512 33.533725
640 33.532094
768 33.531209
896 33.530675

1024 33.530329

Table 4.1: Convergence of area values with increasing spatial resolution of the interface. Conver-
gence rates were between 98-99%.
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Test Functions and Non-functions

The numerical integration method was applied to two functions and three non-functions with ana-
lytical solutions and compared to the exact values. In all five cases, the numerical results appeared
to converge to the analytical solutions as the number of discrete data points was increased for the
given relations.

y = (x− 17)2 − 5 on [−4, 4]. (4.8)

The first function tested (Equation 4.8, Figure 4.3a) has a minimum value of (4−17)2−5 = 164
cm, so the exact solution is ∫ 4

−4

((x− 17)2 − 169)dx = 1002
2

3
cm2.

(a) (b)

Figure 4.3: a) Graph of equation 4.8 used to test the integration algorithm developed; b) Plot of the
area versus different spatial resolutions (2n + 1 data points) showing convergence to a single value

To apply our numerical method, we evenly divided the function domain into 2n intervals (given
an integer n) for a total of 2n + 1 data points. The results of the method for increasing n are shown
below (Table 4.2).

The method converges to the actual solution and the order of convergence is -2.09. The theo-
retical rate of convergence is -2 and the rates of convergence ranged from 94-100% with increasing
resolution.

y = x3 − 9x on [−4, 4]. (4.9)

The second function tested (Equation 4.9, Figure 4.4a) has a minimum value of −28 cm on its
domain, so the exact solution is∫ 4

−4

(x3 − 9x+ 28)dx = 224 cm2.
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Number of data points Result (cm2)
17 1003.0000000000
33 1002.7500000000
65 1002.6875000000

129 1002.6718750000
257 1002.6679687500
513 1002.6669921875

1025 1002.6667480469
2049 1002.6666870117
4097 1002.6666717529
8193 1002.6666679382

16385 1002.6666669846
32769 1002.6666667461
65537 1002.6666666865

131073 1002.6666666716
262145 1002.6666666698
524289 1002.6666666679

Table 4.2: Convergence of area values with increasing spatial resolution of the function from
Equation 4.8

.

(a) (b)

Figure 4.4: a) Graph of equation 4.9 used to test the integration algorithm developed; b) Plot of the
area versus different spatial resolutions (2n + 1 data points) showing convergence to a single value
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The domain was divided into uniform intervals for a total of 2n + 1 data points. Because this
function is odd, the trapezoid integration method approximation gave the exact solution for every
n tested (1− 14, excepting n = 15, which was within roundoff error of the solution, likely due to
the large number of data points).

x = y3 − 9y on [−4, 4]. (4.10)

The first non-function tested (Equation 4.10, Figure 4.5a) has an exact solution of 224 cm2.
The function range was divided into 2n intervals, and again because the non-function is odd, the
integration scheme gave the exact solution for every n tested (from n = 1 to n = 15).

(a) (b)

Figure 4.5: a) Graph of equation 4.10 used to test the integration algorithm developed; b) Plot of
the area versus different spatial resolutions (2n + 1 data points) showing convergence to a single
value

The last two non-functions tested were piecewise-defined. For the first of these non-functions
(Equation 4.11, Figure 4.6a), the analytic solution is 4π + 19.25 ≈ 31.81637061 cm2. The fol-
lowing table shows the results of our convergence tests (Table 4.3). It is clear that the method is
converging to the exact solution. The order of convergence is -1.7427 and the convergence rates
ranged from 96-100%.

y(x) =



√
16− x2 for − 4 ≤ x ≤ 0

3x+ 4 for − 2 ≤ x ≤ 0

x2 − 6 for − 2 ≤ x ≤ 1

−x− 3 for 0.5 ≤ x ≤ 1

x− 5 for 0.5 ≤ x ≤ 4.25

(4.11)

The second piecewise non-function (Equation 4.12, Figure 4.7a) has an analytic solution of
3.296875π + 14 ≈ 24.35743828 cm2. The results from the convergence test are in Table 4.4. The
order of convergence is -1.5616 and the convergence rates ranged from 96-100%.
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(a) (b)

Figure 4.6: a) Graph of equation 4.11 used to test the integration algorithm developed; b) Plot of
the area versus different spatial resolutions (5 · 2n + 1 data points) showing convergence to a single
value

Number of data points Result (cm2)
11 29.553203230275507
21 31.076586272409763
41 31.570214077428687
81 31.733246526310964

161 31.787968285258529
321 31.806577299556231
641 31.812970581695851

1281 31.815184184856278
2561 31.815955074135466
5121 31.816224681970269

10241 31.816319265599390
20481 31.816352521419461
40961 31.816364232945894
81921 31.816368362042319

163841 31.816369819008578
327681 31.816370333284645
655361 31.816370515113007

1310721 31.816370579283607
2621441 31.816370601960749
5242881 31.816370609976588

10485761 31.816370612809976

Table 4.3: Convergence of area values with increasing spatial resolution of function from Equation
4.11.
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y(x) =



−
√

4− (x+ 6)2 for− 8 ≤ x ≤ −4√
0.25− (x+ 4.5)2 for− 5 ≤ x ≤ −4

−
√

0.0625− (x+ 4.75)2 for− 5 ≤ x ≤ −4.5√
0.015625− (x+ 4.375)2 for− 4.5 ≤ x ≤ −4.25

−
√

1.890625− (x+ 5.625)2 for− 7 ≤ x ≤ −4.25√
9− (x+ 4)2 for− 7 ≤ x ≤ −1.1875

(4.12)

Number of data points Result (cm2)
13 20.593750000000000
25 23.007230006203642
49 23.876478333900234
97 24.186747491552556

193 24.296974859088333
385 24.336040800423046
769 24.349869509320520

1537 24.354761674932597
3073 24.356491843812147
6145 24.357103644122596

12289 24.357319964683363
24577 24.357396448465913
49153 24.357423490081811
98305 24.357433050827879

196609 24.357436431078401
393217 24.357437626179710
786433 24.357438048712172

1572865 24.357438198100830
3145729 24.357438250917799
6291457 24.357438269262158

Table 4.4: Convergence of area values with increasing spatial resolution of function from Equation
4.12.

Clearly, the method also converges for this piecewise non-function.

4.3.2 Comparisons with Experimental Study
Assuming the interface separating the fluids is given an initial perturbation of η with the form

η = a(t)cos(kx), (4.13)

the velocity potentials φ1 and φ2 for the heavier and lighter fluids, respectively, are

φ1 = b(t)exp(−ky)cos(kx) (4.14)

φ2 = −b(t)exp(ky)cos(kx), (4.15)

where k is the wavenumber. The equation that describes the growth of the disturbance on the
interface, i.e. the growth rate is
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(a) (b)

Figure 4.7: a) Graph of equation 4.12 used to test the integration algorithm developed; b) Plot of
the area versus different spatial resolutions (6 · 2n + 1 data points) showing convergence to a single
value

σ =

√
kAG− γk3

ρ+ + ρ−
(4.16)

where γ is the interfacial tension, G is the apparent gravity, and A = ρ+−ρ−
ρ++ρ−

is the Atwood number
(Waddell et al. 2001).

We compared our growth rate to that of Waddell et al. (2001) (Figure 4.8), where the authors
experimentally studied single-mode RTI in low Atwood number fluid (J.T. Waddell, 2001). The
authors also found that the growth in amplitude measurements were consistent with linear stability
theory.

(a) (b)

Figure 4.8: Mixing width (amplitude) growth versus time. a) Taken from Waddell et al. (2001) for
comparison b) Mixing width as a function of time from the z-model.
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The model was in good agreement with the results presented by Waddell et al. (2001). We also
compared the evolution of the initial perturbation between Waddell et al. (2001) and our model
at different values of gravitational force and Atwood numbers (Figure 4.9-4.11). The interface
development code seems qualitatively consistent with the interface development in the experiments
performed by Waddell et al. (2001).

(a)

(b)

Figure 4.9: Development of the system with A=0.155 accelerated at 0.74 g at about 0.033 s incre-
ments from a) Waddell et al. (2001) and b) the z-model.

(a)

(b)

Figure 4.10: Development of the system with A=0.336 accelerated at 0.32 g at about 0.050 s
increments from a) Waddell et al. (2001) and b) the z-model.
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(a)
(b)

Figure 4.11: Development of the system with A=0.336 accelerated at 1.34 g at about 0.033 s
increments from a) Waddell et al. (2001) and b) the z-model.

4.3.3 Velocity Profiles
The development of the interface first involves growth in amplitude (vertical translation) and pro-
gresses into the formation of bubbles (the light fluid penetrating the heavier fluid) and spikes (the
heavier fluid falling into the lighter fluid) due to a constant gravitational force. Here we present the
horizontal and vertical velocity profiles (Figure 4.12) and positions (Figure 4.13) both in physical
space. The bumps observed in the velocity profiles is most likely due to a bug in the code that was
not resolved.

(a) (b)

Figure 4.12: Profiles of the a) horizontal velocity and b) vertical velocity.

4.3.4 BHR Model Initial Conditions
Generating appropriate initial conditions is important for the BHR model because initial perturba-
tions affect late-time development of the interface in the z-model, and the initial conditions of the
BHR model rely directly on the volume fractions calculated from this late-time interface. Using
the volume fractions computed from finding the area of the less dense fluid, we can find the turbu-
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(a) (b)

Figure 4.13: Profiles of the a) horizontal position and b) vertical position.

lent kinetic energy, K, mass flux velocity, az, and density specific volume correlation, b directly.
The equations used to calculate these quantities at every time step are

az =
ρ′w′

ρ̄
(4.17)

K = Ck
3

2

(
w′2 − a2

z +
ρw′2

ρ

)
(4.18)

b = −
〈
ρ
′
v
′
〉

(4.19)

where ρ is the density, v = 1
ρ

is the specific volume, ρ′ is the perturbation density about the mean,
and w′ is the vertical velocity (w′ = 0). These equations do not require the volume fractions to be
known at the time of computation. It is also important to note that the coefficients used here are
not calibrated, therefore these estimates are not accurate.

Rollin and Andrews (2013) provided a reformulation of the BHR turbulence model variables
in terms of quantities that can be found from the modal model for interface development

b = Cb
f+f−(ρ+ − ρ−)2

ρ+ρ−
(4.20)

az = Caz
f+f−(ρ+ − ρ−)(vs − vb)

ρ̄
(4.21)

K = CK
3

2

f+f−ρ+ρ−

ρ̄2
(vs − vb)2 (4.22)

S = CS(hb − hs)4f+f− (4.23)

where f+ and f− are volume fractions of the heavy and light fluid, respectively, Cb, Caz , CK , and
CS are engineering coefficients, hs and hb are the positions of the heavy fluid front and the light
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fluid front, respectively, and vs and vb are velocities of the spike and bubble fronts, respectively. We
calculated the BHR initial condition variables using the Rollin and Andrews (2013) reformulations
using the volume fractions that were computed from the integration scheme (Table 4.5).

Variables Rollin and Andrews (2013)
Density-Specific Volume Correlation b 3.66× 10−3

Turbulent Mass Flux az −1.21 cm/s
Turbulence Length Scale S 2.24 cm

Turbulent Kinetic Energy K 373.76 cm2

s2

Table 4.5: BHR variable values from reformulations presented by Rollin and Andrews (2013)
(Equations 4.20-4.23).

4.3.5 Multimode Cases
For completeness, cases with multimode initial conditions were simulated with a band of three
modes for wave numbers, k1 = 0.649, k2 = 1.298, and k3 = 1.947 cm−1. The multi-mode case
evolves into an interface with asymmetric bubbles and spikes (Figure 1.15).

In the first example we have N = 4 Fourier modes (Figure 4.14) and in the second example we
have Nlo = 2 and Nhi = 4 (Figure 4.15). We tested the integration scheme on the first case and
found that the area values converge with increased spatial resolution (Table 4.6).

Spatial Resolution Area (cm2)
64 14.3246503796064

128 14.2185946478657
256 14.1737032666009
512 14.1565696133906

1024 14.1522738140041
2048 14.1511991630158

Table 4.6: Convergence of area computed with integration scheme for multimodal initial conditions
for the interface depicted in Figure 4.14.

4.4 Conclusion
As it turns out, given a set of indexed data points that trace out a curve, the methods to numerically
integrate both functions and non-functions are the same. A trapezoidal method converges to the
actual solution as the number of data points along the curve increases. Our numerical method can
be used conjointly with the Granero-Belinchón and Shkoller z-model for development of an inter-
face between two fluids subjected to a Rayleigh-Taylor instability to determine initial conditions
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(a) (b)

(c)

Figure 4.14: Interface time evolution. a) Multimodal initial interface perturbation b) Interface
amplitude growth c) Interface roll over at late times
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(a) (b)

(c)

Figure 4.15: Interface time evolution. a) Multimodal initial interface perturbation b) Interface
amplitude growth c) Interface roll over at late times
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for the BHR turbulence model given a single-mode initial perturbation of the fluid-fluid interface.
It is important to note that the z-model can lead to interface overlap at later times, and for some
initial conditions the model is unstable and blows up rapidly. For the purposes of this project, the
z-model was only evolved up to before interface overlap occurred and with initial conditions that
did not cause instability.

4.5 Future Work
We hope to develop a higher order method for the numerical integration of non-functions, likely
one that takes the shape of a non-function into account. We also intend to generalize our method to
continuous non-functions that do not necessarily already have a set of indexed data points that trace
out the curve. In addition, now that we have a way to calculate the volume fractions of two fluids
separated by an interface, we intend to further examine the BHR model and determine its efficacy
in modeling real-world problems. In terms of the z-model developed by Granero-Belinchón and
Shkoller, we hope to find a way to increase the long-term stability of the method so it can handle a
greater array of initial conditions.

Dorianis M. Perez is a second-year PhD student at Florida State University studying Compu-
tational Science with a concentration in Fire Dynamics. She is interested in studying atmospheric
turbulence in wildfire problems.

Benjamin Hellwig is a rising senior at Washington State University studying Computer Science
and Applied Mathematics. He is interested in pursuing a graduate degree that combines both of
these fields.
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Chapter Abstract

Multimaterial cells are often necessary in Lagrangian and Arbitrary Lagrangian-Eulerian Hydrody-
namics codes. To properly implement these multimaterial cells, closure models are used to resolve
missing equation of state variables. To investigate the assumptions made by closure models under
shock conditions, identical shocks were applied to pairs of meshes which consisted of a macroscale
multimaterial representation of two materials as well as a mesoscale model of the same materials
using smaller single-material cells. Closure models which act on cells containing materials with
different compressibilities were found to behave unphysically during the early stages of a shock,
while the PMin failure model which tracks void development was found to perform well when
compared to its mesoscale counterpart.

5.1 Introduction

5.1.1 Multimaterial Cells
Uses

One of the challenges of Lagrangian Hydrodynamics is retaining the accuracy of a model as cells
expand and contract. Arbitrary Lagrangian Eularian methods allow meshes to be remapped as cells
stretch past a certain threshold. The newly generated cells are no longer in danger of tangling, but
many cells are now occupied by more than one material. In purely Lagrangian simulations, it can
be useful to initialize cells with multiple materials to avoid complicated cell geometries.
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Challenges

In both single and multimaterial cells, the mass of each material is known and hydrodynamics
equations determine the changes in internal energy and volume of the zone. In single material
cells,

δVzone = δVmaterial

δEzone = δEmaterial

where E is the internal energy and V is the volume. Thus, the density and specific internal
energy of the material is easily determined and can be used to find the pressure through an equation
of state as

ρmaterial =
Mmaterial

Vmaterial

ematerial =
EMaterial

Mmaterial

pmaterial = F (ρmaterial, ematerial)

where ρ is the density, e is the specific internal energy, p is the pressure and F is the equation
of state. Additionally,

pmaterial = pzone

Unfortunately in multimaterial cells,

δVzone = δVmat1 + δVmat2

δEzone = δEmat1 + δEmat2

It is clear that the density and internal energy of each material can not be solved for directly.
To complete the system of equations, it is necessary to introduce a closure model.

5.1.2 Closure Models of Interest
Equal Compressibility Model

The equal compressibility model represents the lack of a closure model. Materials simply retain
the same volume and internal energy fractions as when the cell was initialized. It is also assumed
that the zone pressure is the sum of the material pressures:

δVmat =
1

Vmati/Vzonei
δVzone

δEmat =
1

Emati/Ezonei
δEzone

98



5.1. INTRODUCTION

pzone =
n∑
j=1

1

Vmatji/Vzonei
pmatj

where j denotes the jth material in the cell and n is the number of materials in the cell. This
model, while unphysical, can be useful as a comparison to other more physical closure models.

(Yanilkin et al., 2012)

Tipton Pressure Relaxation

The Tipton pressure relaxation model takes into account that materials will approach pressure and
temperature equilibrium within a cell but will not do so instantaneously. The Tipton model first
updates the pressure of each material at a half timestep according to a guess that

p
k+1/2
mat = pkmat − [(cks,mat)

2/τ kmat](δV
k+1/2
mat /V k

mat)

where k is the current timestep, c is the sound speed, τ is the specific volume, and δV k+1/2
mat is still

unknown. There are now equations equal to the number of materials, and unknowns equal to twice
the number of materials. The pressures of each materials are related to the overall half timestep
pressure by summing the material pressure with a relaxation term.

pk+1/2
zone = p

k+1/2
mat − (cks,mat/τ

k
mat)(L

k/δt)(δV
k+1/2
mat /V k

mat)

where δt is the time represented by half a time step. There are now equations equal to twice number
of materials, and unknowns equal to one plus the number of equations. The system is completed
with the condition that the change in volume of each material must sum to the total change in
volume which is known.

δV
k+1/2
mat1 + δV

k+1/2
mat2 ...+ δV

k+1/2
matn = δV k+1/2

zone

From this system of equations, one can solve for the change in volume fraction for each material
in the next half time step by utilizing the relation:

Vmat = fmatVzone

where f is the volume fraction of the material. From there it is clear that

δfk+1
mat = 2δf

k+1/2
mat

fk+1
mat = fkmat + δfk+1

mat

Thus,
V k+1
mat = fk+1

mat V
k+1
zone

The specific energy is simply determined from pdV :

ek+1
mat = ekmat − pk+1/2

zone δV k+1
mat /Mmat
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where
δV k+1

mat = V k+1
mat − V k

mat

With the specific internal energy, volume, and mass of each material, the pressure and density of
each material is calculated in the same way as for a single material cell as outlined in section 3.1.1.

(Kamm et al., 2010)

Sub-scale Dynamics Model

The subscale dynamics model resolves the equation of state variables by approximating the ve-
locity of the multimaterial interface. Given the velocity of each material at the points immedi-
ately surrounding the interface, the velocity of the interface can be obtained using the linearized
Riemann-solver approximation:

uintfc(mat1,mat2) =
pmat1 − pmat2

ρmat1cs,mat1 + ρmat2cs,mat2

The volume swept by the interface after a time step is then calculated.

Vswept(mat1,mat2) = Aintfc(mat1mat2)uintfc(mat1mat2)δt

The change in volume of each material can thus be updated accordingly:

δV
k+1/2
mat1 = δfkmat1δV

k+1/2 + uintfc(mat1mat2)(δt/2)

δV
k+1/2
mat2 = δfkmat2δV

k+1/2 + uintfc(mat1mat2)(δt/2)

The new volume and volume fractions are then easily calculated.

V
k+1/2
mat = V k

mat + δV
k+1/2
mat

Vmat = fmatVzone

The pressure can also be approximated using the identity of the bulk modulus K.

−δP k+1/2
mat = Kk

mat

δV k+1
mat

V k
mat

P
k+1/2
mat = P k

mat + δP
k+1/2
mat

The corrector step then recalculates all relevant quantities using the new volume fraction and
pressure.

Specific internal energies are then calculated by adding the work terms due to the volume
change and material pressure difference. The pressures due to the differences in material pressure
are calculated using a Riemann approximation.
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Mmatδe
k+1
mat = −pk+1/2

mat f
k+1/2
mat δV k+1 −

n∑
j 6=mat

pmat,ju
k+1/2
intfc(mat,j)δt

The corrector step is then finished by updating the pressure with an equation of state call using
V k+1
mat and ek+1

mat.
(Harrison et al., 2010)

PMin Failure Model

The PMin failure model is a simple closure model for FLAG to handle the creation of porosity in a
material failing under tensile stress. A failure tension stress is specified by the user, and once that
tensile stress (negative pressure) is reached in a cell, it ‘fails’ and the strength for that cell is set to
zero. After this, the cell can no longer support any stress loading. Porosity (void fraction) of the
cell is updated iteratively after this failure threshold is met based on the total stress on the cell and
the resulting pressure and volume.

Vmat + Vvoid = Vtotal

Thus,

Vvoid
Vtotal

+
Vmaterial
Vtotal

= 1

which can be written as

φ+ η = 1

where φ is the porosity and η is the solid volume fraction.
The volume average pressure is updating according to

P̄ = (1− φ)Pmat

Taking a derivative of the volume fraction with respect to time results in the volume rate equa-
tions

φ̇

1− φ =
˙Vtotal

Vtotal
−

˙Vmat
Vmat

To solve the volume rate equations during failure, pressure is updated incrementally according
to

dP̄

dt
= −K̄εelasticv

where εelasticv is the elastic component of volume strain.
After failure, the porosity then evolves in proportion to the change in the plastic volume strain.
Knowing that εtotalv = εplasticv + εelasticv , it can be asserted that
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dφfail
(1− φfail)

= δεplasticv =
dP̄

K̄

The average bulk modulus is just the solid material component of the bulk modulus, thus

dP̄

K̄
=

dP̄

(1− φfail)Kmat

Finally,

dφfail =
dP̄

Kmat

(Carney)

5.2 Simulations

5.2.1 Tantalum Helium Model

Figure 5.1: Mesoscale (right) 1x2 representation of the center cell of a 3x3 multimaterial model
Blue dots are tracer particles used to guide mesoscale

To test the Equal Compressibility Model, the Tipton Relaxation Model, and the Sub-scale
Dynamics model, a 3x3 square model was constructed using FLAG. The squares in the model had
lengths of 3 cm. The model consisted of three purely tantalum cells on the top, three purely helium
cells on the bottom, and three mixed cells in the middle with fifty percent tantalum and fifty percent
helium. The tantalum was initialized with a sesame equation of state and a ptw strength model.

The tantalum was initialized with density of 16.681187 g/cm2 and energy of 0.0. The helium
was initialized with pressure of 1e-6 MBar, density of 0.1462 g/cm2 and temperature of 298.15
K. A square made up of two rectangular cells was also created with combined dimensions equal
to one of the 3x3 squares with the top half of the cells being purely tantalum and the bottom half
being purely helium (Figure 5.1). A constant downward shock of 0.4 gcm/µs2 was then applied
to the top edge of the 3x3 model while tracer particles tracked the velocities of the corners of the
middle cell. Tracer particles also tracked the equation of state variables within the multimaterial
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Figure 5.2: SSD Macroscale model. Time in microseconds

cell for each material. Boundary conditions were then applied to the of the 1x2 model to ensure the
outer edges would remain straight, and that the corners would move with the same velocity as the
corners of the center cell of the 3x3 model during the shock. The thermodynamic variables of each
material were then compared. This simulation was executed for 3x3 models constructed using the
equal compressibility model, the Tipton relaxation model, and the Sub-scale dynamics model.

5.2.2 Tantalum Shell Explosively Driven to Spall

Figure 5.3: Explosive inner cylinder (green) drives tantalum shell (red) outward.

To assess the performance of the P-min failure model, a high explosive cylinder driving a shell
of tantalum was modeled in FLAG. The explosive cylinder and tantalum shell were initialized in

103



CHAPTER 5. MULTIMATERIAL CLOSURE MODEL BEHAVIOR DURING SHOCK
DEFORMATIONS

cylindrical coordinates as a quarter circle, with a radius of 3 cm. The refinement of the mesh is
50 cells in the r-coordinate, and 100 in the phi coordinate. The tantalum used in this simulation
is initialized the same way as the tantalum helium model. The high explosive is a modeled PBX
9502 using a line of sight JWLES burn model.

The resulting spall in the tantalum creates a porous region which FLAG treats as a region of
mixed tantalum and void. When the tantalum shell receives the incoming shock from the explod-
ing inner cylinder of high explosive, it shocks up to pressure in a wave propagating through the
tantalum until that wave reaches the outer edge. The tantalum is then able to release into the space
around it, sending a tensile wave backwards through the material. The interaction of the inertia of
the tantalum moving outward and the tensile stress induced by the release wave create a spall effect
in the metal. The metal begins to fail in regions depending on areas of highest tensile stress, and
voids begin to open where the material separates from itself locally. Local separations can com-
bine and grow to produce larger-scale failure effects within the metal. In FLAG simulations, this
process is handled by a closure model. The macroscale simulation utilizing PMin was compared to
a single cell made up of two tantalum rectangles progressing under pure hydrodynamic separation.
A single cell, of dimension 0.047 cm in height by 0.06 cm in width, in the region of failure of
the macroscale model was tracked, and the velocities of this cell’s corners were imposed upon a
mesoscale mesh of two joined 8 by 13 cell rectangles. The rectangles of the mesoscale simulation
are forced to experience the same corner velocities as the spalling macroscale single cell. Once
the tensile failure stress of tantalum (roughly 900 Megapascal) is reached in the mesoscale model,
the two rectangles are allowed to move away from each other. This effectively creates ”void” be-
tween them in the same way that porosity develops in the failed region of the macroscale. The void
fraction of the macroscale and mesoscale models were both tracked.

Figure 5.4: Single cell in spalling tantalum region is tracked (purple)
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Figure 5.5: Mesoscale representation of single macroscale cell constructed using two 8x13 rectan-
gles. Time in microseconds

Figure 5.6: Mesoscale rectangle separation (”void” being created in the cell). Time in microsec-
onds
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5.3 Results

5.3.1 Tantalum Helium Model

Figure 5.7: Comparison of tantalum volume between models

Figure 5.8: Comparison of helium volume between models
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Figure 5.9: Comparison of tantalum specific energy between models

Figure 5.10: Comparison of helium specific energy between models
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Figure 5.11: Comparison of tantalum pressure between models

Figure 5.12: Comparison of helium pressure between models
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5.3.2 HE Model

Figure 5.13: Mesoscale rectangle separation (”void” being created in the cell)

5.4 Conclusion

5.4.1 Tantalum Helium Model
Figure 5.12 shows that the shock in the mesoscale model is not reached until 1 microsecond has
passed, whereas in each closure model the helium pressure begins to increase instantaneously.
The evidence that the shock is reaching the helium too soon is also apparent in Figure 5.11, as the
pressure of tantalum is much less in the closure models due to tantalum deforming prematurely into
the helium. The premature shock effects in the helium also cause the helium volume to decrease
too quickly in the closure models (Figure 5.8) as well as artificially increase the internal energy
(Figure 5.10). These results clearly show that the closure models attempt to reconstruct the volume
fraction instantaneously when during a shock this should not be the case.

5.4.2 HE Model
As Figure 5.13 shows, the void fraction development via the PMin closure model and natural
hydrodynamic separation create void very equally.

Conant Raj Kumar is a rising senior at Brown University, pursuing his bachelor’s degree in
Physics and Computer Science. Raj loves playing chamber music and bridge with his friends, and
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Chapter Abstract

Here we present results for the inclusion of boundary conditions, such as Dirichlet boundary con-
ditions, for a numerical scheme directed at numerically solving parabolic Partial Differential Equa-
tions (PDEs). Using the general Forward Euler scheme, one can show that by taking uneven step
sizes there is the potential of propagating the solution forward in time by a greater amount than
with even step sizes, while maintaining the same level of accuracy. As shown by Meyer et al.
(2014), if one further requires that the scheme have the Convex Monotone Property (CMP), then
there exists a scheme which results in linear, monotone stability of the solution. This monotone
stability is highly desirable in many physical situations, such as thermal diffusion, where the phys-
ical system will not oscillate, but will behave monotonically. However, the scheme devised by
Meyer does not include situations that have a boundary condition, and the inclusion of boundary
conditions will henceforth be our focus.

6.1 Motivation
There are many physical situations which can be described by a parabolic PDE, whereas there are
not many numerical methods designed to handle these problems in an efficient manner, requiring
egregious amounts of computational resources for accurate answers. In particular physical situa-
tions which include a boundary condition are of particular interest - a thermal reservoir diffusing
across the system of interest for example. This situation is still described by the heat equation, but
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the boundary condition causes many issues in terms of analytic and numeric solutions for the prob-
lem. Here, by utilizing the Convex Monotone Property (CMP), we provide a super-time-stepping
(STS) method for solving this boundary condition problem.

6.2 Monotone Stability
When solving a scalar parabolic equation, it is useful to have a method that has monotone stability.
Suppose the next step for a numerical scheme is specified as

un+1
i = H (un; i) (6.1)

then we say that a numerical method is monotone or monotone stable if at any time step n

vnj ≥ unj ∀j =⇒ vn+1
j ≥ un+1

j ∀j (6.2)

In words, this property guarantees that if one solution v is greater than or equal to u at every point
in space, then this will remain true for all times. It has been shown that the condition

∂

∂uni
H (un; j) ≥ 0 for all i, j, un (6.3)

is a sufficient condition for a method to be monotone by LeVeque (1992).
We begin by demonstrating how this sufficient condition can be used to construct a monotone

STS two-stage scheme with no boundary condition. The standard equation for thermal diffusion is

∂u

∂t
= α

∂2u

∂x2
(6.4)

Discretizing space-time, we find that we can represent this equation as:

un+1
i − uni

∆t1
= α

uni−1 − 2uni + uni+1

∆x2
(6.5)

un+2
i − un+1

i

∆t2
= α

un+1
i−1 − 2un+1

i + un+1
i+1

∆x2
(6.6)

Where we have already alluded to the fact that we can have unequal time steps, ∆t. Solving both
of these equations for their respective advanced time step, we find that:

un+1
i = uni + δ1

(
uni−1 − 2uni + uni+1

)
(6.7)

un+2
i = un+1

i + δ2

(
un+1
i−1 − 2un+1

i + un+1
i+1

)
(6.8)

δ1 =
α∆t1
∆x2

(6.9)

δ2 =
α∆t2
∆x2

(6.10)
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As shown by Meyer et al. (2014), this can be solved purely in terms of the initial time, and we find
that expression to be:

H = δ1δ2u
n
i−2+(δ1 + δ2 − 4δ1δ2)uni−1+(1− 2δ1 − 2δ2 + 6δ1δ2)uni +(δ1 + δ2 − 4δ1δ2)uni+1+δ1δ2u

n
i+2

(6.11)
This is the equation of interest, as we are now able to construct monotone stability from this
equation under the following constraint:

∂H
∂uj
≥ 0, j ∈ {i− 2, . . . , i+ 2} (6.12)

Or more simply, that all of the coefficients in 6.11 be non-negative. Under this constraint, we are
able to construct the region shown in Figure 6.1. All points within this region are points which
have monotone stability. It is clear that by taking time steps of varying size, one can integrate a
greater amount time in the same number of steps as compared to a scheme taking time steps of a
fixed size. From the constraints given by equation (6.11) we can calculate that the optimal scheme
(i.e., the scheme that utilizes (δ1, δ2) in the monotone stability region that maximizes δ1 + δ2) is
given by

(δ1, δ2) =

(
2−
√

2

2
,
2 +
√

2

2

)
(6.13)

This scheme gives us considerable advantage over a Forward Euler scheme. With Forward Euler
(in one dimension), the largest time step we can take is ∆x2

2α
, thus leading us to define

∆texp ≡
∆x2

2α
(6.14)

The optimal scheme gives us two different size time steps

∆t1 =
2−
√

2

2

∆x2

α
= (2−

√
2)∆texp (6.15)

∆t2 =
2 +
√

2

2

∆x2

α
= (2 +

√
2)∆texp (6.16)

Where we have ordered the time steps from smallest to largest. This is a trend we will continue to
follow, as this guarantees that we stay within the region of monotone stability. We then denote τ
as the total time step step taken in a single super time-step. In an STS scheme with s stages, we let

τ =
s∑
i=1

∆ti (6.17)

For this two-stage scheme, we can conclude

τ = ∆t1 + ∆t2 = 4∆texp (6.18)
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Figure 6.1: Rays originating at the origin and terminating on the optimal time step for RKC (blue)
and RKL (red)

If we were to repeat this procedure for a 3-stage scheme, we would find the optimal time steps
to be

∆t1 = 2(2−
√

3)∆texp (6.19)
∆t2 = ∆texp (6.20)

∆t3 = 2(2 +
√

3)∆texp (6.21)

which would then give τ = 9∆texp. This process can be extended to an arbitrary number of
stages s and is better known as first-order Runge-Kutta-Chebyshev (RKC1) as seen in Alexiades
et al. (1996); Verwer (1996). Alexiades et al. show that in general the total time step τ will grow
quadratically with the number of stages

τ = s2∆texp (6.22)

However, while this scheme is monotonically stable, it does not satisfy the Convex Monotone
Property (CMP), as shown by Meyer et al. (2014). The CMP requires that a method remain mono-
tone even when the time steps in the multi-stage scheme are scaled down to any value below the
maximum time step allowed. For instance, consider the method RKC1, which for two stages is
given by the blue star in Figure 6.1. If we were to scale δ1 and δ2 by the same factor, we would
trace out the dashed blue line down to the origin. Because part of this line is outside the monotone
stability region, scaling the time steps down by the same factor could result in a scheme that is not
monotone. For this reason, RKC1 does not have the Convex Monotone Property.
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6.3. DIRICHLET BOUNDARY CONDITIONS

This scaling of δ1 and δ2 can happen even when the time step is not reduced. Recalling equa-
tions (6.9) and (6.10), the values of δ1 and δ2 also change by the same factor when the value of
the diffusion coefficient α is changed. This happens, for instance, in heat conduction problems
involving multiple materials with different thermal conduction coefficients. In such problems, the
maximum diffusion coefficient determines the overall time-step. This implies that any region in
the problem that does not have the material with maximum α will have to use a time-step size that
is non-optimal (i.e., on the dashed line rather than at the star). As a result, solving such a problem
with a method that does not have CMP will invariably fail to give physically accurate solutions.

In figure 6.1, we have colored in the red the optimal scheme that does satisfy the CMP. The
red star is the scheme that maximizes δ1 + δ2 and has a line connecting it to the origin that is
entirely within the monotone stability region, thus guaranteeing that it has CMP. This scheme is
the Runge-Kutta-Legendre (RKL) scheme and it has been shown to have super time steps of

τ =
s2 + s

2
∆texp,

s2 + s− 2

4
∆texp (6.23)

at first and second order respectively. For a two stage scheme, we find that the optimal time steps
that satisfy CMP are:

∆t1 =
3−
√

3

4
∆texp (6.24)

∆t2 =
3 +
√

3

4
∆texp (6.25)

Neither of these schemes are well equipped to handle boundary conditions. We have focused
on producing a scheme explicitly designed for handling boundary conditions while maintaining
monotonic stability and the CMP. We will see in the next section how including a boundary condi-
tion changes the region of monotone stability.

6.3 Dirichlet Boundary Conditions
We now consider how imposing a Dirichlet boundary condition affects the optimal super-time
stepping scheme. Suppose again that we are solving the heat equation but now we assume that the
solution value at the left endpoint un0 is fixed at some value, thus un0 = u(x0, tn) = u(x0, t0). It
becomes immediately apparent that the RKL scheme is insufficient, as shown in Figure 6.2 as even
at 3 stages the RKL scheme has lost the CMP.

The boundary condition causes RKL to no longer have the CMP, and as such we justify deriving
a new scheme. Following the same analysis in the case without the boundary condition, we find
for two stages that for the point immediately adjacent to the boundary:

un+2
1 = (δ1 + δ2 − 2δ1δ2)un0 + (1− 2δ1 − 2δ2 + 5δ1)un1 + (δ1 + δ2 − 4δ1δ2)un2 + δ1δ2u

n
3

(6.26)

If we plot the region satisfying

∂H
∂uj
≥ 0, j ∈ {i− 2, . . . , i+ 2} (6.27)
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Figure 6.2: A plot of the coefficients of the 3 stage RKL2 scheme. The negative region indicates a
loss of the CMP.

we obtain the region given in Figure 6.3. The boundary condition has constrained the region
of monotone stability, which is why the optimal scheme for this boundary condition will have a
smaller total time step τ than in RKC1. We find the optimal scheme within this monotone stability

Figure 6.3: Demonstrated here is the region of monotone stability for a scheme involving 2 steps
with boundary conditions (BC).

region to be
(δ1, δ2) = (1/3, 1) (6.28)

and thus the total time step is

τ = 2∆texp +
2

3
∆texp =

8

3
∆texp (6.29)

We can see that the advantage we get from this two-stage scheme is reduce in comparison to RKC1,
but the advantage is that this two-stage scheme will have the monotone property for an arbitrary
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Dirichlet Boundary condition. For a three stage scheme, the optimal scheme is

∆t1 = (2−
√

2)∆texp (6.30)
∆t2 = ∆texp (6.31)

∆t3 = (2 +
√

2)∆texp (6.32)

which gives
τ = 5∆texp (6.33)

In general, we find that the scaling of τ is quadratic with the number of stages

τ =
s(s+ 2)

3
∆texp (6.34)

The numerical scheme can be derived for a larger number of stages by using shifted Chebyshev
polynomials of the second kind. This differs from RKC1 which uses Chebyshev polynomials of
the first kind. Chebyshev polynomials of the second kind are denoted Un for the polynomial of
degree n. Because of this notation and the fact that this scheme is first order accurate, we will
denote this scheme as RKU1.

The STS schemes that we will describe are intended to solve the ODE system resulting from
the discretization of a parabolic PDE. Let

du

dt
= Mu(t) (6.35)

be such a ODE system where M is a constant coefficient matrix that represents the discretization
of the PDEs parabolic operator. As an ODE system, the analytic solution to (6.35) is

u(t) = etMu(0) =
∞∑
n=0

(tM)n

n!
u(0) (6.36)

We can express our numerical scheme by its stability polynomial Rs(z), which acts as an approxi-
mation to (6.36). For an s-stage STS scheme, the stability polynomial will have order s and evolves
our numerical solution from time t to t+ τ with the relation

u(t+ τ) ≈ Rs(τM)u(t) (6.37)

A scheme specified by polynomial Rs(z) is pth order accurate when Rs(z) has leading order terms
that match the series expansion of ez up to and including the term of degree p. The stability
polynomial for an RKU1 scheme with s stages is given by

Rs (z) = bsUs (1 + w1z) (6.38)

bs =
1

(s+ 1)
(6.39)

w1 =
3

s(s+ 2)
(6.40)
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µj =
2bj
bj−1

; νj = − bj
bj−2

µ̃j = µjw1 = µj
3

s(s+ 2)

However, as shown in Figure 6.4, this scheme does not satisfy CMP even at 2 stages. As such, we

Figure 6.4: A plot of the coefficients of the RKU1 scheme, where the negative regions indicate a
lack of the CMP.

now turn our attention to the scheme which does satisfy the CMP: the Runge-Kutta-Gegenbauer
method.

6.4 Runge-Kutta-Gegenbauer at First Order
With careful analysis of the conditions which lead to the CMP for the Dirichlet Boundary condi-
tions, one will find that this lends rise to a Runge-Kutta-Gegenbauer (RKG) scheme whose stability
polynomials are the shifted Gegenbauer Polynomials with α = 3

2
. The stability polynomial of an

s-stage scheme is given by:

Rs (z) = as + bsC
(3/2)
s (1 + w1z) (6.41)

Where C3/2
s is the s-order Gegenbauer polynomial with α = 3/2. Imposing the condition that

Rs(0) = 1 and R′s(0) = 1, it can be easily verified that:

bs =
2

(s+ 1)(s+ 2)
(6.42)

w1 =
4

s(s+ 3)
(6.43)

With as = 0 ∀s. At this point it becomes necessary to note that the Gegenbauer Polynomials have
a recurrence relation as follows (which is independent of α:

Cα
s (z) =

1

s

[
2z(s+ α− 1)Cα

s−1(z)− (s+ 2α− 2)Cα
s−2(z)

]
(6.44)
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As this recurrence relation is what allows us to build the recursion scheme for a numerical method.
We find that the stability polynomials for the RKG method obey the following:

bjC
(3/2)
j (1 + w1z) = µjbj−1C

(3/2)
j−1 (1 + w1z) + νjbj−2C

(3/2)
j−2 (1 + w1z) + µ̃jbj−1C

(3/2)
j−1 (1 + w1z)

(6.45)

Where the parameters are defined as:

µj =
2j + 1

j

bj
bj−1

µ̃j = µjw1

νj = −(j + 1)

j

Which leads to the following numerical scheme:

Y0 = u(t0)

Y1 = Y0 + µ̃1τMY0

Yj = µjYj−1 + νjYj−2 + µ̃jτMYj−1, 2 ≤ j ≤ s

u(t0 + τ) = Ys

Where M is an operator with real, negative eigenvalues.
For a two stage scheme, we find that the values of δ1, δ2 that are optimal and satisfy CMP are:

δ1 =
5−
√

5

8

δ2 =
5 +
√

5

8

And this scheme does in fact satisfy the CMP, as we have have verified for up to 12 stages with
a Mathematica script, and we provide a direct example of RKL, and RKG with 7 stages including
the boundary condition in Figure 6.6.

6.5 Runge-Kutta-Gegenbauer at Second Order
In deriving a second order method for RKG3/2, we impose the additional constraint on the stability
polynomial, R′′s(0) = 1. From there, we find the following constraints:

w1 =
6

(s+ 4)(s− 1)
(6.46)

bj =
4(j − 1)(j + 4)

3j(j + 1)(j + 2)(j + 3)
(6.47)

aj = 1− (j + 1)(j + 2)

2
bj (6.48)

(6.49)
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Figure 6.5: Rays originating at the origin and terminating on the optimal time step for RKU (green)
and RKG (purple). The region in brown is the region for which boundary conditions are applied,
providing a visual aid for how the time step is reduced when applying boundary conditions.
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6.5. RUNGE-KUTTA-GEGENBAUER AT SECOND ORDER

(a) A plot of the coefficients of RKL2 for Dirichlet
Boundary Conditions, a 7 stage scheme

(b) A plot of the coefficients of RKG2 for Dirichlet
Boundary Conditions, a 7 stage scheme

Figure 6.6: A demonstration of the continued CMP for RKG (b) and the failure of RKL (a) to
maintain the CMP for boundary conditions. This is evident due to the appearance of negative
regions for RKL.

Where we have chosen b0 = 1 and b1 = 1
3
. The choice of b1 = 1

3
results in Heun’s method. Using

the recurrence relation found in 6.44, we find that the stability polynomials for the second order
RKG method obey the following (after simplifying):

aj + bjC
3/2
j (1 + w1z) =µj

(
aj−1 + bj−1C

3/2
j−1(1 + w1z)

)
+ νj

(
aj−2 + bj−2C

3/2
j−2(1 + w1z)

)
+ µ̃j

(
aj−1 + bj−1C

3/2
j−1(1 + w1z)

)
+ (1− µj − νj) + γ̃j

Where we have the following definitions:

µj =
2j + 1

j

bj
bj−1

µ̃j = µjw1

νj = −j + 1

j

γ̃j = −µ̃jaj−1

This recurrence easily lends itself to the following second order accurate scheme for numerical
implementation:

Y0 = u(t0)

Y1 = Y0 + µ̃1τMY0

Yj = µjYj−1 + νjYj−2 + (1− µj − νj)Y0 + µ̃jτMYj−1 + γ̃jτMY0, 2 ≤ j ≤ s

u(t0 + τ) = Ys
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6.6 Von Neumann Stability Analysis

In this section, we will consider von Neumann stability analysis of the RKU1, RKU2, RKG1, and
RKG2 schemes. To do this we assume that the solution u at tn and tn+1 is

u(xi; tn) = Un
k e

ikxi (6.50)

u(xi; tn+1) = Un+1
k eikxi (6.51)

Then, we apply each of these schemes to this initial condition given by u(xi; tn) to obtain u(xi; tn+1),
and we can solve for the ratio Un+1

k /Un
k in terms of k∆x. This ratio Un+1

k /Un
k is known as the

amplification factor. In general, a scheme that satisfies |Un+1
k /Un

k | < 1 for 0 < k∆x < π will ad-
equately damp all modes and therefore will not have instabilities that result in a staircasing effect.
The first-order methods we propose do not adequately damp that smallest wavelength mode, but
the second-order methods do.

(a) (b)

(c) (d)

Figure 6.7: (a)-(d) Show the amplification factor of RKU1, RKG1, RKU2, and RKG2 respectively
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6.7 Heat Diffusion
Here we present direct calculations of the heat equation in two dimensions. In general the heat
equation reads as (generalizing equation 6.4):

∂u

∂t
= α∇2u

Where ∇2 is of course the Laplacian Operator. In one dimension, this is exactly equation 6.4 and
we use the central difference method as described. In two dimensions, one finds that the following
discretization is necessary:

un+1(xi, yi)− un(xi, yi)

∆t
= α

un(xi−1, yi) + un(xi+1, yi) + un(xi, yi−1) + un(xi, yi+1)− 4un(xi, yi)

∆x∆y

In the two dimensional Forward Euler scheme, we find that the maximal time step allowed that is
still stable is:

∆texp =
∆x2 + ∆y2

8α

=
∆x2

4α

In the limit that ∆y → ∆x. We present a direct example in Figure 6.8 for how RKL2 fails to
maintain monotonicity but RKG2 succeeds, where we have used a 3 stage scheme for both. The

(a) Shows the evolution of under RKL2. (b) Shows the evolution under RKG2

Figure 6.8: Beginning with the initial conditions of T=100 at (0.02,0.97) and 0 else, with the
boundary conditions of T = 0 at x=0,1 and T = 0 at y=0,1 we evolve the system in time.

negative components present in RKL2 are a direct result of the negative region present in Figure
6.2. It is worth noting that in the asymptotic regime, RKL is linearly stable and as such will in fact
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approach the correct solution. However at early times, the lack of monotonicity causes a violation
of the Second Law of Thermodynamics - there are areas getting colder and different areas getting
hotter without any external energy input. As such, RKG provides a much more reliable method for
calculations at early times with Dirichlet boundary conditions.

6.8 Conclusion
We have shown that current STS methods are incapable of handling boundary conditions and main-
taining monotonicity, thus presenting a clear need for a new method. The RKG3/2 method fills this
need, maintaining monotonicity throughout calculations while still being capable of performing
STS that scale in proportion to the number of stages squared and thus providing a clear advantage
over the Forward Euler scheme. Furthermore, this scheme can be used with Strang Splitting as
well, thus allowing for equations which are not purely parabolic PDEs to take advantage of STS
on the parabolic aspect of the equation. It is worth mentioning that in particular, RKG allows for
accurate modeling of solutions at early times and as such if early times are under investigation
RKG is the optimal scheme. However, RKC, RKL, RKU, and RKG are all linearly stable and as
such will all approach the correct solution asymptotically at long times. The usefulness of RKL
for finding the asymptotic solution should not be ignored in favor of RKG, as RKL will be more
computationally efficient even when including boundary conditions.
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Chapter Abstract

We conducted a computational study of high speed fluid air and water jets using the XRAGE hy-
drocode. The physical and numerical causes of features observed in the jets are investigated. The
multiphase PATECH equation of state is used for water, which presents challenges for the XRAGE

solver and contributes to the development of a nonphysical carbuncle in one of the jets.

7.1 Introduction
We conducted a computational study using the XRAGE hydrocode of two types of fluid jets (air
and water) moving into ambient air at supersonic speeds after passing through a de Laval nozzle.
In this report, we investigate the physical and numerical causes of the observed properties of these
jets. Of special interest is the behavior of the XRAGE code when simulating supersonic water jets
with a multiphase equation of state (EOS).

Our flow regime of interest is supersonic flow; an object or fluid is supersonic if it is travelling
faster than the speed of sound of the medium. We are most familiar with the term ‘supersonic’
referring to an object exceeding the speed of sound of ambient air, which is roughly 343 ms−1

at sea level. However, this type of motion is not limited to either Earth-bound or solid objects,
with examples such as stellar winds (van Buren, 1993), or as in the cases studied here: simulated
supersonic water and air jets.

7.1.1 de Laval Nozzle
The de Laval, or converging-diverging, nozzle takes the approximate shape of an hourglass, start-
ing broad at the inlet, narrowing to a minimum at the throat, and then returning to its initial width at
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Figure 7.1: The de Laval nozzle gemoetry used in our study.

the exhaust (Fig. 7.1). Because the throat is narrower than the inlet and flow rates must remain con-
stant, fluids accelerate as they pass through the nozzle. In the ideal case, this process is isentropic,
and the internal energy and pressure of the fluid drop as it accelerates. As the fluid approaches
the exhaust having already reached supersonic speeds at the throat, its pressure and internal energy
will continue to drop as the velocity increases further until it exits the nozzle (Clarke and Carswell,
2007; de Laval, 1889).

Using this nozzle, a subsonic fluid flowing into the inlet can be made to exit at supersonic
speeds. The de Laval nozzle can be found in Astrophysical effects Opher et al. (2004),Blandford
and Rees (1974) as well as being used in the creation of metal powders Allimant et al. (2009). In
our investigation, we used the de Laval nozzle to accelerate the jets in all of our simulations.

7.1.2 Supersonic Fluid Properties

One of the features of supersonic jets is the formation of shock waves. Shock waves are discontin-
uous changes in the pressure, temperature, and density of a fluid that propogate outwards from a
disturbance. For almost all materials, including air and water, the pressure and density will increase
across the shock front.

Supersonic fluid jets form bow shocks, a type of shock produced by blunt supersonic objects
where the surface producing the shock is perpendicular to its motion. These shocks curve away
from the object producing them. Bow shocks may be attached, where the shock is in contact with
the object, or detached, where there is a region separating the object and the shock front. Less blunt
and more supersonic objects decrease the size of this region in detached bow shocks (L. D. Landau,
1959). We expect to see detached bow shocks in our simulations due to blunt shape of the jets.

The conditions across the shock front should satisfy the Rankine-Hugoniot equations e− e0 =
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Figure 7.2: Selected isotherms for the Patech Equation of State for water used in the simulations.

0.5(P + P0) ∗ (V0 − V ) where P is pressure, V = 1/ρ is the specific volume, and e is the specific
internal energy (Zel’dovich and Raizer, 2002). The subscript 0 denotes the state ahead of the shock
and 1 the state behind the shock. For a perfect gas equation of state, P = (γ − 1)eρ, the solution
to the Rankine-Hugoniot equations is given by (Eq. 7.1).

ρ1

ρ0

=
P1

P0
+ µ2

1 + µ2 P1

P0

, (7.1)

where
µ2 =

γ − 1

γ + 1
. (7.2)

7.1.3 Saturation Dome
Our simulations used three equation of state models for the three materials considered in our study:
air, steel, and water. As described above, we used a perfect gas equation of state for air; for steel,
we used the Steinberg-Mie-Guneisen equation of state described in (Steinberg, 1996); and for
water, we used the PATECH multiphase equation of state from XRAGE (Gittings et al., 2008). This
includes phases for liquid and gaseous water, as well as multiple ice phases. Our focus was on the
liquid and vapor region as shown in the phase diagram (Fig. 2). An important distinction between
liquid and gaseous water is that liquid water is nearly immiscible with air while water vapor is
very miscible. The transition from liquid to vapor occurs in what is known as the saturation dome
(Zemansky and Dittman, 1997). This is shown in the PATECH EOS diagram (Fig. 7.2) where the
isotherms for water are horizontal. To the right of the dome, water is in a gaseous state, and the
vertical sections to the left of the dome are either liquid or ice depending on the temperature. Inside
of the dome, liquid and vaporous water exist in equilibrium, with vaporous portion decreasing with
specific volume. Above and to the right of this curve, water exists solely in a vaporous state. The
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vapor saturation curve lies along the boundary between the saturation dome and that region. The
Clausius-Clapeyron relation describes the slopes of this curve, which exists between the triple
point and the critical point for any substance,

dP

dT
=

L

T∆v
, (7.3)

where P is pressure, T is temperature, L is the specific latent heat of water, and ∆v is the change
in the volume (Menikoff and Plohr, 1989). We consider two analytic approximations to describe
the vaporization curve. We use the Antoine equation (Antoine, 1888)

log10 P = 8.14019− 1810.94

244.485 + T
(7.4)

and the Arden Buck equation (Buck, 1981)

P (T ) = 0.61121 e(18.678− T
234.5

)( T
257.14+T

) (7.5)

to help determine the location regions which existed purely as vapor. Both of these equations
are accurate to within 1% for the range of temperatures and pressures of the simulations.

In the following simulation results, water with a density of 1.0 g/cc is liquid, and quickly enters
the saturation dome at lower densities (Fig. 7.2). Because of this, we often make the assumption
that any computational cells with a density of 0.99 g/cc or higher are composed entirely of liquid
water and any with a lower density are a mixture of liquid and vaporous water.

7.1.4 Kelvin-Helmholtz Instabilities
As a jet moves through an ambient fluid, instabilities are expected to form. Most notable are
Kelvin-Helmholtz instabilities, which form when two fluids move with different velocities across
their interface. This creates vorticity at the boundary which, along with irregularities in the flu-
ids, causes wave-like structures to form. As time progresses, these structures become more ex-
treme, and resulting in a mixing between the two fluids (Kelvin, 1871). We expect to see Kelvin-
Helmholtz instabilities in all of our jets, as the jet material flows through/past the ambient air.

7.1.5 XRAGE

To simulate the high speed water and air jets, we utilized the code XRAGE (Gittings et al., 2008), a
Los Alamos National Laboratory Eulerian hydrodynamic solver. XRAGE solves the equations for
conservation of mass, momentum and energy:

∂ρ

∂t
+∇ · (ρ~u) = 0 (7.6)

∂ρ~u

∂t
+∇ · (ρ~u~u+ P ) = 0 (7.7)

∂(ρE)

∂t
+∇ · ((ρE~u+ P · ~u)~u) = 0 (7.8)
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where ρ is the mass density, ~u is the fluid velocity. E is the specific total energy with e as the
specific internal energy:

E =
1

2
u2 + e (7.9)

The system is closed by the equation of state (see Section 7.1.2).

7.2 Methods
Our fluid jets are propelled out of a reservoir encased in steel, through a de Laval nozzle into ambi-
ent air. Eight initial configurations are considered, varying the fluid of the jet (air and water), nozzle
width (1.5 cm and 2.5 cm), and system symmetry (rectangular and axisymmetric/cylindrical). Wa-
ter jets are propelled by a PBX-9501 High Explosive (HE) Booster (Menikoff, 2006) whereas the
air jets are propelled by a pressure differential between the ambient air and the ‘jet air’ in the
reservoir (Fig. 7.3, Table 7.1).

The rectangular and axisymmetric geometries model different physical systems, with the ax-
isymmetric cases being rotated about the left boundary where the rectangular cases use a reflective
boundary. As a result, volume elements in the axisymmetric simulations that are further from the
axis of symmetry have larger volumes. With the HE positioned near the right of the domain, there
are significantly more explosive in the axisymmetric cases than in the rectangular ones, so we
expect to see larger, more powerful jets form. Additionally, in 3D axisymmetric space, the calcula-
tion of integrals, gradients, and divergences differ from cartesian space. In cylindrical coordinates
the divergence of some ~A(r, ψ, z) is given by:

∇ · ~A =
1

r

∂

∂r
(r ~Ar) +

1

r

∂ ~Aψ
∂ψ

+
∂ ~Az
∂z

(7.10)

where in cartesian coordinates the divergence of some ~A(x, y, z) is given by:

∇ · ~A =
∂ ~Ax
∂x

+
∂ ~Ay
∂y

+
∂ ~Az
∂z

(7.11)

Due to the discretization of the domain in the axisymmetric case, the factor of r−1 can cause
numerical errors in simulations where r approaches 0 at a rate faster than ~Ar and ~Aψ.

Ambient Air Pressurized ’Jet Air’ Water Steel
Density (g/cc) 0.001 0.002 1.000 7.900
Pressure (bar) 1.0 2.0 1.0 1.0

Temperature (K) 296.15 296.15 296.15 296.15

Table 7.1: Initial conditions for each material.

The domain of the simulations was 10 cm in the x direction and 40 cm in the y direction with
reflective boundaries. This domain was partitioned into a course uniform computational mesh with
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Figure 7.3: The initial geometry of the problem. The HE is at the midpoint of the wall of the
reservoir and has a radius of .5 cm. The left border of the domain is the axis of symmetry for
cylindrical simulations.

a base cell resolution of .05 cm. At every cycle in the XRAGE solver, an adaptive mesh refinement
(AMR) algorithm uses quadtree decomposition based on field gradients to refine this mesh up
to a user-defined maximum depth (Gittings et al., 2008), which we refer to as the ‘level’ of the
simulation (Table 7.2). While many cells may remain at lower levels of refinement, adjacent cells
may differ by at most 1 level of refinement. 5 levels of mesh refinement are considered for water
jet simulations and only the first 3 levels are considered for air jet simulations.

A multi-phase equation of state was used for the water material (PATECH). The Mie-Gruneisen
EOS for L304 steel from Steinberg (Steinberg, 1991) is used for the steel confining shell. For both
the ambient and jet air, a perfect gas EOS was used. For all simulations, the volume of fluid
(VOF) interface reconstruction method was used for the steel. The VOF method tracks the volume
fractions of the fluids within cells, and uses this information to construct a line dividing the cell
at the approximate interface location within mixed cells between time steps (Hirt and Nichols,
1981). We conducted runs for the air jet simulations with VOF entirely disabled in an effort to
reduce steel spall which were interfering with jet development, but these are not considered in our
analysis due to numerical errors arising in mixed cells. The time step of the solver is determined
by the Courant-Friedrichs-Lewy (CFL) condition, which is dependent on velocity and local sound
speed. Physically, the materials in our simulations are assumed to be immiscible, so numerical
mixing by the solver of mixed cells in non-VOF runs can lead to unphysical values for velocity
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Level Cell Size (cm) Mesh Dimensions (cells)
1 .05 200x800
2 .025 400x1600
3 .00125 800x3200
4 .000625 1600x6400
5 .0003125 3200x12800

Table 7.2: Maximum background mesh granularity for each level of refinement.

and sound speed. These unphysical values utilized by the CFL condition drive down the time step
of the simulations, making their completion untenable. VOF treatment prevents this numerical
mixing and avoids the issue.

7.3 Results
We began by running some initial tests at the lowest refinement to determine what the final time
for the simulations should be based on both available computational resources and reflected shocks
from the domain boundary interfering with jet development. We chose the final time of the simlu-
ations to be 220 µs for the water jet simulations and 1200 µs for the air jet simulations.

For all of the jets, we observed supersonic speeds (greater than 343 ms−1). In our analysis, we
do not look at the Mach number with respect to local sound speed, as for some of our cases there
were numerical features relating to the equation of state used for water which made the local speed
of sound unphysically low, causing the local Mach number to be extremely high (> 103). As such,
when we refer to the Mach number, we are instead referring to the speed with respect to the speed
of sound in ambient air. In both the water and air jets, the axisymmetric cases achieved higher
Mach numbers due to the increased amount of high explosive or pressurized air in those cases.

7.3.1 Air Jets

All of the air jets we simulated reached supersonic speeds. The 1.5 cm cases resulted in higher
Mach numbers than the 2.5 cm cases, and the axisymmetric cases also had higher Mach numbers
than the cartesian air jets (Fig. 7.4). Both of these results were as we had expected, since the
smaller nozzle width would force air through faster than with a wider nozzle; also, the axisymmet-
ric jets had a higher volume of pressurized air pushing through roughly the same sized nozzles.

The observed features of these jets include the presence of Kelvin-Helmholtz instabilities,
shock waves through the steel and ambient air, channels and vorticies forming as the jet devel-
ops, and the presence of spall from the steel which is most likely non-physical.

Shockwaves propagated through the steel confining shell at the onset of the simulations, caus-
ing spalling. The steel ejecta are visible as dark spots when visualizing the gradient of the density
(Fig. 7.5, 7.6). The spalling is more prevalent in the rectangular simulations, and the severity re-
duces under refinement; little to no spalling is observed in the water jet simulations. VOF interface
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Figure 7.4: A Mach number comparison between the nozzle widths and symmetries.

reconstruction contributed to the spalling as the steel’s strength model reacted to discontinuities
and stress along the interface. When the air jet simulations were run without VOF, spalling was
eliminated. However, as discussed earlier, disabling VOF drove down the time step of the simula-
tions to untenable levels, so VOF is used for all our simulations. Due to the spall interfering with
jet development and data visualization, lower levels of refinement are less useful to our analysis.

Many vorticies are clearly visible in the axisymmetric cases (Fig. 7.7, 7.8). In the 2.5 cm
axisymmetric nozzle at the coursest level of refinement, a single vortex is present; this breaks into
4-5 distinct vortices under refinement (Fig. 7.8). This makes it apparent that the lower levels of
refinement are underresolved and do not capture the properties of these instabilities.

While vorticies are visible in the rectangular geometry, they are much less prevalent. They also
differ from the axisymmetric geometry, in that they appear interior of the jet as opposed to forming
along the outside of the jet. They are also less numerous and less severe, however the interference
from the spall makes analysis difficult (Fig. 7.9).

There are also multiple channels which appear in the axisymmetric case for the higher levels of
refinement which run vertically up the inside of the air jet. These features do not appear until later
in the simulations, by which point the resevoir has been evacuated sufficiently for shock waves to
start travelling back down the air jet towards the nozzle. This can be seen in Figure 7.10, where
the density just past the nozzle is higher than inside the nozzle, and the shock wave producing the
channels can be seen travelling back down. The shock moving down while the body of the jet is
moving up causes the jet to be stretched, and the channels begin to form through this process. Due
to the fact that the channels appear more clearly in the higher refinements, we suspect that another
level of refinement would be necessary to fully resolve the features and show convergence.

Another pattern we observed in the air jet cases was the presence of waves travelling through
the air jet. One of these waves can be seen in figure 7.5, near the exhaust of the nozzle. These
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Figure 7.5: The gradient of the density for the 2.5 cm nozzle air jet in axisymetric geometry.

135



CHAPTER 7. HIGH-SPEED JETS

Figure 7.6: The gradient of the density for the 2.5 cm nozzle air jet in rectangular geometry.
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Figure 7.7: Vorticity under refinement.
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Figure 7.8: Vorticity under refinement.
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Figure 7.9: The vorticity of each geometry/nozzle at the final time of the simulations.

Figure 7.10: The densities of the air jets at the final time of the simulations.
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waves are not seen in the rectangular geometries, however the interference of the steel spall may
be contributing to the lack of observed waves inside the jets.

Shockwaves propagate through the steel confining shell at the onset of the simulations, causing
spalling. The steel ejecta are visible as dark spots when visualizing the gradient of the density (Fig.
7.5, 7.6). The spalling is more prevalent in the rectangular simulations, and the severity reduces
under refinement; little to no spalling is observed in the water jet simulations. VOF interface re-
construction contributed to the spalling as the steel’s strength model reacted to discontinuities and
stress along the interface. When the air jet simulations were run without VOF, spalling was elim-
inated. However, as discussed earlier, disabling VOF drove down the time step of the simulations
to untenable levels, so VOF is used for all our simulations. Due to the spall interfering with jet
development and data visualization, lower levels of refinement are less useful to our analysis.

7.3.2 Water Jets

All of the jets attained supersonic speeds. The 1.5 cm nozzles resulted in faster jets than the 2.5
cm nozzles, and the axisymmetric cases also resulted in higher Mach numbers than the cartesian
jets. Overall, the water jets also had higher Mach numbers than their air jet counterparts.

The axisymmetric water jet simulations reach a higher velocity and greater heights than their
rectangular counterparts (Fig. 7.11). Bear in mind that the two geometries are modelling different
physical systems; the rotation of the axisymmetric simulations about the axis of symmetry pro-
duces a ring of HE and a wider nozzle. Further, where the shock waves from the HE reflect off
the leftward boundary in the rectangular simulations, the HE induced shock collides with itself at
the axis of symmetry in the cylindrical simulations. These differences contribute to the observed
dissimilarities of the jets.

For both the axisymmetric and rectangular geometries, the main body of the 1.5 cm nozzle jet
reached higher speeds than the main body of the 2.5 cm nozzle jet. However, a carbuncle develops
ahead of the main body of the jet in the axisymmetric 2.5 cm nozzle jet. This feature reached
significantly higher speeds than the 1.5 cm nozzle jet, and is discussed more in section 7.3.3.

The mass flux rate (eq. 7.12) gives the total amount of mass flowing through a surface at any
point in time where n̂ is normal to the surface. Integrating the mass flux rate with respect to time
gives the mass flux, or the total mass that has flowed through a surface over the time interval. Here,
the surface is the horizontal plane across the throat of the nozzle.∫∫

S

ρ(n̂ · ~u)dA (7.12)

While the main body of the 1.5 cm nozzle jet reaches a higher velocity, the mass flux rate
across the throat of the nozzle is consistently higher for the 2.5 cm nozzle (fig. 7.13, 7.12). This is
consistent with our expectations, as the 2.5 cm nozzle surface has a significantly larger area than
the 1.5 cm nozzle.

We also observed the presence of fairly strong bow shocks in the water jet simulations caused
by the motion of the jets into ambient air at supersonic speeds (Fig. 7.16, 7.17). The presence
of shocks in the ambient air is much more noticeable for the water jets than in the air jets, as the
density and speeds of the jets are significantly higher in these simulations.
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Figure 7.11: Water jet density gradient comparison at level 5 refinement. The red circle denotes
the carbuncle ahead of the main body of the axisymmetric 2.5 cm nozzle jet, which is absent in the
other simulations.
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Figure 7.12: Mass flux for axisymmetric water jets across the throat of the nozzle.

Figure 7.13: Mass flux rate for axisymmetric water jets across the throat of the nozzle.
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Figure 7.14: A visualization of the areas where water is in the gaseous state, as determined by the
Antoine equation.

The interior of the reservoir contains a number of interesting features. The products of the PBX
9501 can be seen on the right hand side of the container, with many instabilities along its interface
with the water. As shocks turn the corner at the intake of the nozzle, low density pockets form
along the nozzle. These regions impact the shape of the jet as it continues to develop; this effect is
apparent in the rectangular cases in Figure 7.11. Many reflected shocks can be seen inside of the
reservoir. These shocks drive the development of the jet; the mass flux rate across the throat of the
nozzle increases as they pass, and decreases in their absence (fig. 7.13).

Using the Antoine and Arden-Buck equations (Eq. 7.4, 7.5), we are able to visualize the
regions where water exists solely as a vapor. This is done by taking the ratio of the two sides of the
equation. With the temperature component in the numerator, if the value of the ratio is between 0
and 1, water will exist only as a vapor. This is because the pressure will be too small to compress
the vapor back to a liquid. This visualization can be seen in Figures 7.14 and 7.15, where only
the regions where the ratio is between 0 and 1 are visible in grayscale. In these pictures, the areas
which are primarily vapor are just in front of the jet and at parts along the jet itself. Additionally,
we can see in figure 7.15 that areas of low density near the axis of symmetry also contain pockets
of water vapor as well. The red areas shown in the figures are mostly air or liquid water, but some
parts along the jet exist in the saturation dome, in a mixed equilibrium between vaporous and liquid
water.

7.3.3 Carbuncle

Vaporization and rapid expansion of water near the left hand boundary seeds this feature (Fig. 7.14.
We suspect this instability excites numerical problems in the solver that lead to the growth of the
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Figure 7.15: A visualization of the gaseous water regions as the jet develops.

carbuncle in the axisymmetric 2.5 cm case not observed in the other cases. This carbuncle appears
not to converge under mesh refinement where the main body of the jets is more consistent (Fig.
7.16). In both axisymmetric cases, we observe low density, high mach number regions near the
axis of symmetry where a phase change occurs. (Fig. 7.18). In the axisymmetric 2.5 cm case, such
a region forms along the jet-air interface at 52 µs. This region expands and forms the carbuncle.
A similar effect is seen in the 1.5 cm case but to a lesser extent, reaching a lower velocity and not
forming a carbuncle (Fig. 7.19). In cylindrical geometry, the discretization of the domain near
the axis of symmetry can introduce numerical error (eq. 7.10). Non-zero horizontal velocities
observed along the axis of symmetry in the carbuncle suggest that this may be a contributing factor
to its growth. This, along with the absence of the carbuncle in the rectangular case, supports
that its growth is non-physical and a result of numerical problems in the solver for axisymmetric
geometries. One could attempt to verify this with a full 3D simulation of the physical system,
however this is computationally expensive and beyond the scope of this report.

While the main body of the 1.5 cm jet reaches higher speeds than the main body of the 2.5
cm jet, the carbuncle travels at a higher speed than the 1.5 cm jet, causing the 2.5 cm jet to be
higher overall (fig. 7.18). As one would expect a flow through a 1.5 cm nozzle to achieve a higher
velocity, this may be another indicator that the carbuncle is non-physical.

The reason for the formation of the carbuncle in the 2.5 case but not the 1.5 case is unclear. The
sharp spike in velocity does not occur in the 1.5 cm case, and the low density region near the throat
of the nozzle is much smaller than in the 2.5 cm case. It may be related to whether a vaporous
region forms along the jet-air interface or in some interior part of the jet.
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Figure 7.16: Divergence of the velocity. Notice the non-converging carbuncle ahead of the main
body of the jet in the 2.5 cm nozzle case. Red countors denote where the Rankine-Hugoniot
equations are satisfied for a shock into ambient air. Countors along the outside of the jet capture
the bow shock, while the interior countors are not shocks but simply satisfy the Hugoniot equation
with ambient air as the upstream material.
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Figure 7.17: Divergence of the velocity. Red countors denote where the Rankine-Hugoniot equa-
tions are satisfied for a shock into ambient air. Countors along the outside of the jet capture the
bow shock, while the interior countors are not shocks but simply satisfy the Hugoniot equation
with ambient air as the upstream material.
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Figure 7.18: Mach numbers w.r.t. ambient air sound speed (343 m/s).

Figure 7.19: Carbuncle formation in the cylindrical water jets at 52 µ s.
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7.4 Conclusions
We analyzed various features, both physical and numerical, observed in the simulations we ran of
high-speed water and air jets. The axisymmetric geometry created jets were more supersonic due
to the higher volume of HE in that geometry.

The air jet simulations produced steel spall, most likely caused by numerical effects from the
VOF treatment, which caused visual noise when plotting the data. The jets also created strong
instances of Kelvin-Helmholtz instabilities and vortical structures which became more aparent and
numerous with higher levels of mesh refinement. Single vortices broke into multiple vortices under
refinement, allowing for more structure to develop in the air jets.

In the water jets, we noticed a carbuncle forming early in the cylindrical, 2.5 cm nozzle cases,
which developed into a high velocity, vaporous region enclosed by a thing layer of liquid water near
the axis of symmetry. The reason for the formation of the carbuncle is suspected to be numerical
due to its non-convergence under refinement and its absence in rectangular geometry. Its formation
and growth may also be attributed to an increase in velocity and decrease in density as water
vaporized at the front of the jet.

The mach numbers with respect to the ambient air sound speed for all of the jets show that
they reach supersonic speeds while passing through the de Laval nozzle. In both axisymmetric
and rectangular geometries, the 1.5 cm nozzle created faster moving jets than the 2.5 cm nozzle
(less the carbuncle). The speed and height of the main bodies of the jets was consistent under
refinement, again less the carbuncle.

7.5 Further Research
The multiphase EOS used to model water allows for vaporization during the development of the jet.
This vaporization and subsequent expansion may seed non-physical carbuncles while modelling
axisymmetric water jets. Additionally, water vapor and liquid water have different properties; for
example, water vapor is completely miscible with air while liquid water is completely immiscible.
These properties are not currently reflected in the XRAGE code. Further experiments using a mul-
tiphase EOS for water may allow us to better model physical systems. For example, the selective
application of VOF based on some density/pressure/temperature threshold may allow us to model
the miscibility of water in various phases.

Full 3D simulations of the water jets may verify our conjecture that the development of the
carbuncle is tied to numerical errors caused by the cylindrical coordinate system.

The water jet problem presented here exercises hydrodynamic features not commonly tested in
most hydrocodes, and may make a good test problem for hydrodynamic solver development.
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7.6 Appendices

Geometry Jet Type Nozzle Width Level Zones Cycles Seconds Processors R
Rectangular Water 1.5 1 285060 8436 1.45E+05 16 1033

2 393420 8435 1.86E+05 16 1116
3 820624 16949 7.05E+05 16 1232
4 1987892 38300 3.87E+06 16 1228

2.5 1 278244 8435 1.43E+05 16 1029
2 381280 8449 1.85E+05 16 1089
3 748464 16944 7.05E+05 16 1124
4 1770484 35518 3.64E+06 16 1080

Air 1.5 1 407760 35588 7.43E+05 16 1221
2 449452 35245 8.45E+05 16 1172

2.5 1 403972 34643 7.18E+05 16 1218
2 462108 35804 8.45E+05 16 1222

Cylindrical Water 1.5 1 416756 8689 2.06E+05 16 1101
2 969684 18011 8.80E+05 16 1241
3 2674544 39200 5.07E+06 16 1292

2.5 1 447828 8591 2.16E+05 16 1114
2 1107292 17795 9.69E+05 16 1271
3 3086720 38302 5.83E+06 16 1267

Air 1.5 1 284928 37446 6.53E+05 16 1021
2 332312 84745 1.61E+06 16 1094

2.5 1 269112 34816 6.06E+05 16 966
2 406692 35302 7.92E+05 16 1134

Table 7.3: Computational efficiency (R) as measured by zone cycles per second processor. Nozzle
width in cm. Simulations which are absent from this table had a variable number of processors
during their execution, invalidating the metric.
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Chapter Abstract

We investigate dense plasma line shapes using two approaches. The first approach investigates the
implementation of a real-space method for the KKR Green’s function method for calculating the
electronic structure of a configuration of atoms. We find the real-space method to be as accurate
as the original k-space implementation of KKR while being significantly less computationally
expensive.

In the second approach, we calculate microfield and pair distribution functions from PAMD to
assess the effectiveness of the APEX approximation via comparison of pair interaction potentials:
the Debye-Huckel (APEX) and numerically calculated, DFT (PAMD). We find that APEX, which
is widely used as a tool for more informed plasma experiments, is inaccurate at lower temperatures
(on a scale from 100-101eV), and that the physics of bound states, partial ionization, and core-
valence orthogonality must be considered.

8.1 Introduction
In a dense plasma environment, specroscopic lines broaden and shift due to electronic structure
effects. Models of these line shapes are vital, informing experimentalists of plasma observables:
temperature, density, and ionization, so as to make more well-advised measurements and creating
more opportune environments.

Our investigation proceeds in two directions under this umbrella. In section 8.2 we explore
improving the Korringa-Kohn-Rostocker Green’s function method by implementing a real-space
calculation of the Green’s function, which is simpler to implement as well as less computationally
intensive compared to the standard k-space implementation Starrett (2018). In section 8.3 we
explore improving the physics of plasmas in the widely-used APEX line shape approximation.
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8.2 KKR

8.2.1 Introduction

The Korringa-Kohn-Rostocker Green’s function method (KKR) is an ab-initio multiple-scattering
method that calculates the electronic structure of dense plasmas at high temperatures (10s to 100s
of eV). KKR is comprised of two general steps. In the first step (single-site-scattering) the method
solves the scattering for a single single atom in a polyhedron. In the second step (multi-site-
scattering) the method extends the single-site solution to a set of scattering atoms. This is done by
unifying the single-site solutions across all polyhedra by enforcing consistent boundary conditions,
through solving Dyson’s equation (Ebert et al. (2011)).

The Green’s function for a particular atom site can be split into single-site and multi-site con-
tributions. The multi-site term is defined as follows, in terms of Rydberg units:

Gms(ε, r, r) = 2m
∞∑
l1=0

∞∑
l2=0

l1∑
m1=−l1

l2∑
m2=−l2

1

r2
PR
l1

(r, ε)Yl1,m1(r̂)Gn1n1
l1m1l2m2

PR
l2

(r, ε)Yl2,m2(r̂)∗ (8.1)

In equation 8.1, the term Gn1n1
l1m1l2m2

is called the structural Green’s function matrix, Ylm are the
spherical harmonics, Pl refers to the solution to the radial Schrödinger equation, where the super-
scripts R and I refer to the regular and irregular solutions. n1 and n2 represent two particles, and
l1, m1, l2, and m2 are their respective quantum numbers. Gn1n1

l1m1l2m2
is determined using Dyson’s

equation (Ebert et al. (2011)). Dyson’s equation depends on the structural t-matrix (t) of each
atomic site as well as the structure constant matrix (Gn1n2

0,l1m1l2m2
) of the configuration. The t-matrix

is calculated in the single-site step, and the structure constant matrix is calculated in the multi-
site step. These are used to construct the Green’s function matrix with the Dyson’s equation as
follows, where the boldface terms represent matrices that span over all particles in all possible
quantum states:

G = G0(I− tG0) (8.2)

In the original KKR formulation, the calculation for Gn1n2
0,l1m1l2m2

is done in k-space using an
Ewald summation and a Fourier transform back to real-space. The k-space method was originally
designed for ordered systems. Here we are trying to apply it to disordered plasmas. The k-space
method works for this application, but it is computationally expensive and cumbersome. For dis-
ordered systems, such as those calculated by molecular dynamics (MD) codes, the k-space method
becomes computationally prohibitive for large systems. In this project we implement a method to
calculate Gn1n2

0,l1m1l2m2
directly in real-space. The real-space method does not rely on periodicity,

which is artificially enforced on plasmas in the k-space formulation. Furthermore, the real-space
method is faster, much easier to parallelize, and easier to implement than the k-space method.
Here we explore the real-space implementation and how the resulting calculation compares to the
k-space method.
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Figure 8.1: Representation of a correlation sphere. The translucent blue box contains four particles
representing the configuration. The particles shown here are configured in an fcc crystal structure.
The configuration represents one periodically repeating cubic domain. Units on the axes are in
terms of the Bohr radius.

8.2.2 Methods
In this section we describe the method used to implement the real-space structure constants in
the KKR code. First we describe generally how the method is structured. First, for each atom in
the configuration we calculate a correlation sphere. The correlation sphere is a data structure that
contains all atoms, including periodic images of the configuration, that are within a pre-specified
correlation radius of the atomic site. An example of a correlation sphere is shown in figure 8.1. In
the structure we pre-calculate the relative position of every atom in the sphere to every other atom
in the sphere, as these will be needed later when calculating the structure constants.

A structure constant matrix and a Structural Green’s function matrix are calculated for each
correlation sphere. Equation 8.2 suggests a separate t-matrix is also required for each correlation
sphere to calculate the structural Green’s function matrix. Therefore a t-matrix is constructed
from the super-t-matrix describing all atoms in the configuration for each correlation sphere. The
already existing code for the matrix inversion in equation 8.2 in the k-space method is used for the
real-space method once the various matrices are constructed.

Finally, the structural Green’s function matrix describing the atoms in the configuration is
constructed. Only the n = n′ terms are needed in G. The indexing of the atoms in the configuration
and each correlation sphere requires special care, especially becuase the correlation spheres contain
periodic images of the atoms in the configuration. We use the index n to represent an atom in the
configuration, and an index nc to represent an atom in a correlation sphere. Furthermore, each atom
nc in a correlation sphere is associated with an atom n in the configuration. The correlation sphere
representation must maintain a record of these associations. Next we define the Green’s function
matrix of correlation sphere centered on atom n as Gc,n. With these definitions we construct G by
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setting Gnn = Gncnc
n , and all other terms to 0, as they are not needed.

Next we provide more detail on the general process described above, starting with the cor-
relation spheres. A correlation sphere structure is built for each atom in the configuration. The
correlation sphere structure stores the cartesian location of each atom relative to the central atomic
site, as well as the associated index n of each atom. Furthermore, we also precompute the polar
separation coordinates between any two atoms in the correlation sphere, as these values will be
used later when calculating the structure constants.

What follows is a look at creating the right number of periodic images for the correlation
sphere. To remind the reader, the correlation sphere contains all atoms that fall within a pre-
defined correlation radius provided at runtime. Consider the configuration as a cubic box with box
length rbl containing N atoms. A periodic image of the configuration is then a copy of the box
shifted by a multiple of rbl in the x, y, and z directions. The upper limit on the number of boxes
needed in each direction is nmax = drc/rble. We define ix, iy, and iz as denoting the index of a
box image in each direction. The correlation sphere is constructed by iterating the components of
i from −nmax to nmax, and then iterating over all atoms in the box image. If an atom is within the
correlation radius, its location and index n are stored in a temporary structure. After iterating over
all boxes, the data in the temporary structure is copied into the correlation sphere.

Next we describe the generation of the structure constant matrix. A structure constant matrix
is calculated for each atom in the configuration. An element of the structure constant matrix is
defined as follows, in Rydberg units:

Gn1n2
0,l1m1,l2m2

= −ı4πp
∑
l3,m3

ıl1−l2−l3h+
l3

(pRn1n2)C l2m2
l1m1,l3m3

Yl3,m3(R̂n1n2) (8.3)

In equation 8.3, p is the complex momentum, h+
l are the spherical Hankel functions, C l2m2

l1m1,l3m3

are Gaunt coefficients, Ylm are spherical harmonics, and Rn1,n2 is the separation vector between
two atoms in the correlation sphere. The Gaunt coefficients are defined as follows:

C l2m2
l1m1,l3m3

≡
∫
dr̂Yl1,m1(r̂)Yl2,m2(r̂)∗Yl3,m3(r̂) (8.4)

A couple techniques are used to speed up the structure constant calculation. The Gaunt coeffi-
cients are pre-computed for all l,m combinations the first time a structure constant calculation is
made. The Ylm are computed once every time the structure constant is calculated. The structure
constant calculation is also parallelized over the six symbols n1, n2, l1, l2, m1, and m2.

The structure constant matrix for a given correlation sphere can quickly become very large,
consuming multiple gigabytes of memory. For this reason a feature was implemented to write the
structure constant data for each correlation sphere to a file, and deallocate the associated memory.
The structure constant data is then reloaded to memory when calculating the Green’s function
matrix for that correlation sphere. This allows increasing the correlation radius, thereby increasing
the number of particles in each correlation sphere, to higher values before the system runs out of
memory. This has the added benefit of increasing the accuracy of the calculation.
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Figure 8.2: Density of states (DOS) of real-space and k-space for T = 10eV and T = 100eV
aluminum in fcc configuration. The real-space density of states converges to the k-space version
as the correlation radius is increased.

Figure 8.3: Density of states for T = 10eV in an MD configuration. The real-space version
appears to match well with the k-space version.

8.2.3 Results

In this section we describe some results of calculations done using the real-space and k-space
methods for KKR. Figure 8.2 shows the electronic density of states for aluminum in an fcc lattice
configuration. The density of states are shown for the temperatures of 10eV and 100eV, and for
different correlation radii. The correlation radius is shown for different correlation radii in terms
of the Wigner-Seitz radius. Figure 8.3 shows the density of states for aluminum at a temperature
of 10eV and in a configuration calculated by PAMD, described further in section 8.3.1. This
configuration is a disordered configuration that more accurately represents the configuration found
in a dense, high-temperature plasma.

Figure 8.4 shows calculated equations of state (EOS), pressure and internal energy. The results
calculated by the real-space method are shown in blue for different correlation radii in terms of the
number of particles found in each correlation sphere. The EOS calculated by the k-space method
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Figure 8.4: Equation of state. The k-space version is shown as yellow line. The real-space version
is shown in blue as a function of the correlation radius, and quickly converges to the k-space line.

are represented by the orange line.
Finally, figure 8.5 illustrates how long the code takes to run in both modes for various configu-

rations of aluminum. KKR was run for aluminum in an fcc and in an MD configuration, as well as
at temperatures of 10eV and 100eV. The real-space variant was run for three different correlation
radii, shown in the figure as the number of particles in the correlation spheres. Two measurements
were made each run. The first is the time to calculate the structure constants, and the second is
the time to calculate the Green’s function using equation 8.2. Shown in the figure are the structure
constant measurement, as well as the combined total of both measurements. These measurements
are made at two points in the code. The first is when the code calculates the electronic structure in
the main phase of the method, and the second is during the DOS calculation. Notice that the DOS
phase of the code takes nearly an order of magnitude longer than any of the real-space variants.

8.2.4 Discussion
Figure 8.2 shows in the top panels that the results of the real-space implementation still generally
resembles the k-space results when there is only one particle in the correlation spheres. As the
correlation radius is increased to include more pareticles in the correlation spheres the real-space
curve converges towards the k-space curve. This confirms the assumption that only the particles
in an atom’s correlation sphere can be used to make an acceptable approximation for the Green’s
function. Furthermore, figure 8.3 shows that the real-space implementation matches well with the
k-space method for an MD configuration of eight particles of aluminum at 10eV.

Next, figure8.4 shows that the real-space method calculated parameters match the k-space cal-
culated EOS for even small correlation spheres, when there are only 13 particles in the correlation
spheres. This further supports that the correlation sphere approximation when calculating the real-
space structure constants is valid.

Finally, a number of conclusions can be drawn from figure 8.5. In the DOS calculation, the k-
space method requires significantly more k-points than for the regular part of KKR. This explains
why the real-space method is nearly an order of magnitude faster than the k-space method for all
tested correlation radii. In the regular calculation, the k-space and real-space methods are largely
comparable. Althoug, we should note that the real-space method appears to have an advantage
for the t = 100eV cases, as well as the MD configuration cases. This supports the assertion that
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Figure 8.5: Time to run KKR. The real-space time is shown for three n number of particles in the
correlation spheres. The top eight plots are measurements during the main phase of the calculation,
and the bottom eight are measurements during the DOS phase of the calculation. The time in the
DOS plots are shown in log scale.

the real-space method generally runs faster for disordered systems. Furthermore, the real-space
implementation is simpler than the k-space method, and because of this simplicity more portions
of the code can be made to run in parallel. Further improvements in coefficient precalculations can
be made to further increase the speedup of the real-space method over the k-space method. Fur-
thermore, the code currently uses large amounts of memory, which in many cases can be reduced
substantially to increase the size of the correlation spheres that allow for further gains in accuracy
from real-space method.

8.2.5 Conclusion
In this project we implemented a real-space Green’s function calculation for KKR. The real-space
method is based on the assumption that only that atoms inside a central atom’s correlation sphere
affect its electronic structure, allowing for a significantly simpler calculation. The real-space
method has a number of advantages over the k-space method, namely that it’s simpler, easier to
implement, and achieves a comparable level of accuracy without having to do the computation in
k-space. Furthermore, the real-space method is significantly faster than the k-space method when
calculating the electronic density of states, especially for disordered systems, like those found in
plasmas.
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Figure 8.6: The following screencapture of a molecular dynamics simulation movie was made by
summer students, like Michael and myself, in the dense plasma theory group (Dense Plasma The-
ory Group, LANL). The left is DFT-MD and the right is a one-component (OCP) carbon plasma.

8.3 Microfield Distribution Functions

8.3.1 The pseudoatom molecular dynamics algorithm

Pseudoatom molecular dynamics (PAMD) offers everything from classical molecular dynamics
codes: particle-particle interactions, dynamical evolution of perhaps multi-species systems, and
periodic boundary conditions giving an accurate view of a virtually infinite number of particles
from a finite number, all carried out in the micro-canonical ensemble. The “PA” in “PAMD,”
however, offers a realistic description of the electronic structure using density functional theory
(DFT) to calculate (numerically) an interaction potential u between particles from either an orbital-
free or Kohn-Sham scheme. A calculation from the beginning allows for the evidently necessary
inclusion of physics: partial ionization, bound states, and core-valence orthogonality that provides
grounds for improvement on the topic of approximating line shape calculations in low temperature
dense plasmas.

PAMD numerically calculates an interaction potential during initialization, and uses it to cal-
culate forces throughout iterations. This is different from the DFT-MD algorithm in that only one
interaction potential is calculated, whereas in DFT-MD an interaction potential is calculated at ev-
ery time step. Someone who is familiar with DFT would agree that this can be computationally
expensive, as even one self-consistent field convergence with reasonable parameters and conver-
gence criterion might be on the scale of several minutes. PAMD, though, agrees quite well with
DFT-MD, even with the significantly decreased computation time (Starrett et al. (2015)).

160



8.3. MICROFIELD DISTRIBUTION FUNCTIONS

Theory

Of importance to both schemes, the Kohn-Sham equations from DFT are solved self-consistently;
these consist of the one-particle Schrödinger-like equation,{

− ~2

2m
+ veff (r)

}
φi(r) = εiφi(r) (8.5)

with an effective potential,

veff (r) = v(r)︸︷︷︸
external

+

Coulombic︷ ︸︸ ︷∫
dr′

n(r′)

|r− r′| +
δExc[n(r)]

δn(r)︸ ︷︷ ︸
exchange & correlation

(8.6)

from a system of non-interacting fermions. In either scheme, the important (Nobel-prize-winning)
realization is that one can obtain desired observables of the many body system from these non-
interacting fermions by generating the same electronic structure as the stroungly coupled system
through summing over moduli,

n(r) =
N∑
i=1

|φi(r)|2, (8.7)

The pseudoatom electron density nPAe (r) is defined,

nPAe (r) ≡ nfulle (r)− nexte (r), (8.8)

where the electron density nfulle (r) is for a system where v(r) is provided by a nucleus at the origin
is surrounded by a spherically averaged ionic configuration, which is characterized by the ion-ion
pair distribution function gII(r). The external elecron density nexte (r) describes the same system
without the central nucleus. A superposition of pseudoatom electron densities nPAe centered at
nuclear sites then construsts a total electron density,

ne(r) =
∑
i

nPAe (|Ri − r|), (8.9)

where Ri is the position of nucleus i and the sum is over every nuclear site. To obtain the basis set
{Ri} (representing nuclear configurations), classical MD was used with pair interaction potentials.
It can be shown that a pair interaction potential between pseudoatoms in Fourier space VII equals
the following quantity:

VII(k) =
4πZ̄2

k2
+
nscre (k)2

χe(k)
, (8.10)

where Z̄ =
∫

drnscre (r) is the average number of ionized electrons per atom, χe is the electron
response function, and the screening electron density nscre (r) = nPAe (r)− nione (r) is the effects of
the pseudoatom on the valence electrons.
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8.3.2 Microfield Distributions from PAMD
When an ion is in the presence of an electric field, we observe the splitting of energy levels. More
precisely, an electric field will induce a “partial separation” of the degeneracy of eigenenergies
(for one electron atoms). This phenomenon is known as the Stark effect and was rightly noticed in
1913 by German physicist Johannes Stark.1

As one might be able to imagine, however, the electronic structure in a dense plasma is more
complicated than, say, a highly-symmetric hydrogen/hydride lattice at zero Kelvin. The ions in
plasmas can be hundreds of thousands of Kelvin, flying around in every which way and, possi-
bly, of multiple species. It is then necessary to keep in consideration the range of electric fields
experienced by the ion in the medium.

The effects of an ion’s surroundings on the ion at rj yields what is referred to as a microfield
distribution function. In a more rigorous sense, a microfield is a probability distribution of electric
fields.

The probability of finding a field E in d3E is

P (‖E‖) =

∫
· · ·
∫

dr1dr2 · · · drN

[
δ

(
‖E‖ −

∥∥∥∥∥
N∑
j=1

Ej

∥∥∥∥∥
)
p(r1, r2, · · · , rN)

]
, (8.11)

where p(r1, r2, · · · , rN) is the probability distributions of finding the N particles at positions
r1, r2, · · · , rN and Ej is the field at the radiating ion position j.

For molecular dynamics, a probability fistribution for a time step α of ion positions {Ri},

Pα(E) =

∫
· · ·
∫

dr1dr2 · · · drN

[
δ

(
‖E‖ −

∥∥∥∥∥
N∑
j=1

Ej

∥∥∥∥∥
)

1

N

N∑
i=1

δ(Rj −Ri)

]
(8.12)

In spherical coordinates,

Pα(E) =
1

N

N∑
j=1

1

E2 sin2 θ
δ

(
‖E‖ −

∥∥∥∥∥
N∑
i=1

Ei(Ri −Rj)

∥∥∥∥∥
)
δ
(
θ − θ̃

)
δ
(
φ− φ̃

)
(8.13)

We let ∫
dE · Pα(E) ≡

∫
dE ·Wα(E), (8.14)

where Wα(E) is the microfield distribution function. As such,∫
dE ·Wα(E) =

∫
dE

[
E2 1

N

N∑
j=1

1

E2
δ

(
‖E‖ −

∥∥∥∥∥
N∑
i=1

Ei(Ri −Rj)

∥∥∥∥∥
)]

(8.15)

This simplifies to

Wα(E) =
1

N

N∑
j=1

δ

(
‖E‖ −

∥∥∥∥∥
N∑
i=1

Ei(Ri −Rj)

∥∥∥∥∥
)

(8.16)

1The more well-known Zeeman effect (the magnetic field analog of energy level splitting) was noticed sixteen
years earlier in 1897 by Pieter Zeeman, a Dutch physicist.
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Then a time average is taken over timesteps and normalized. In practice, however, a histogram was
constructed from force production throughout iterations and normalized.

Results

Figure 8.7 shows the microfield and pair distributions for aluminium ions with a solid density of 2.7
g/cm3 for APEX and the MD algorithm, where the MD algorithm used a Debye-Huckel interaction
potential (MD-DH) similar to APEX, and a DFT-calculated, numerical potential (PAMD). We
notice that the MD-DH microfield agrees with APEX, and PAMD slightly disagrees.

Figure 8.8 shows the microfield and pair distributions for beryllium ions with a solid density of
1.85 g/cm3 for the MD algorithm with Debye-Huckel, DFT potentials, and Debye-Huckel poten-
tials with corrections to degeneracies. Degenerate effects can be accounted for through modifying
the electron inverse screening length,

k2
deg = k2

e

I1/2(η)

I−1/2(η)
3 k2

e =
4πnee

2

kBTe
, (8.17)

where η is the electron chemical potential and Iν(η) are Fermi integrals (Iglesias et al. (2000b)).
Here we see that the largest discrepancy is at 5eV with MD-DH and PAMD, but the discrepancy is
smaller when degeneracies are corrected – this is promising, insofar as the shifting of the distribu-
tion towards PAMD suggests that PAMD is accurate, despite it not agreeing more; the difference
between MD-DH corrected and PAMD suggests that the Debye-Huckel and APEX approximations
are missing physics that is evidently important at lower temperatures, physics like bound states,
partial ionization, and the orthogonality of eigenstates between core and valence electrons. The
discrepancy grows even smaller at 50eV, and is almost nonexistent at 500eV.
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Figure 8.7: D. P. Kilcrease’s approximate APEX model assumes a Debye-Huckel interaction
potential (instead of a numerically-calculated potential in PAMD) and agrees well with the MD
simulation MD-DH using this same potential. This validates our MD implementation.
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Figure 8.8: Despite agreeing at 500eV, at 5eV and somewhat at 50eV, the pair distributions and
microfields of MD-DH and PAMD substantially disagree – even with degeneracy effects accounted
for through a scaled inverse electron screening length. This shows that the effect of core-valence
orthogonality matters – physics not contained in APEX.

165



CHAPTER 8. DENSE PLASMA LINE SHAPES

The second moment sum of the distribution

To verify that the MD algorithm is working as intended in certain areas: calculating an interaction
potential and constructing the microfield and pair distributions, we introduce the second moment
sum rule.

For a system of N particles interacting through a pair potential u(r), the total energy is

U(r1, . . . , rN) =
1

2

∑
i,j=1
i 6=j

u(|ri − rj|) (8.18)

If we add a another particle at r0, then the total energy is

U(r0, r1, . . . , rN) =
N∑
i=1

u(|r0 − ri|) +
1

2

N∑
i,j=1
j 6=i

u(|ri − rj|) (8.19)

The force on particle 0 is

F(r0) = −∇0U(r0, . . . , rN) = −
N∑
i=1

∇0u(|r0 − ri|) (8.20)

The ensemble average of F · F can be computed by

〈F · F〉 = 〈∇0U · ∇0U〉 = kBT 〈∇2
0U〉 (8.21)

To compute this, we need the Laplacian of U

∇2
0U =

N∑
i=1

∇2
0u(|r0 − ri|) (8.22)
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the ensemble average of which is

〈∇2
0U〉 =

1

Ξ

∫ N∑
i=1

∇2
0u(|r0 − ri|)e−U/kBT d3r0 . . . d

3rN (8.23)

=
N

Ξ

∫
∇2

0u(|r0 − r1|)e−U/kBT d3r0 . . . d
3rN

= N

∫
∇2

0u(|r0 − r1|)
[

1

Ξ

∫
e−U/kBT d3r2 . . . d

3rN

]
d3r0 d3r1

= N

∫
∇2

0u(|r0 − r1|)
[

(N + 1)2

V 2

(N − 1)!

(N + 1)!
g(|r0 − r1|)

]
d3r0 d3r1

=
N + 1

V 2

∫
∇2

0u(|r0 − r1|)g(|r0 − r1|) d3r0 d3r1

=
N + 1

V

∫
∇2u(r)g(r)d3r

= 4πn

∫ ∞
0

r2∇2u(r)g(r) dr

= 4πn

∫ ∞
0

[
r2u′′(r) + 2ru′(r)

]
g(r) dr (8.24)

Then the expectation value of the square-magnitude of the force on particle 0 is

〈F · F〉 = 4πnkBT

∫ ∞
0

[
r2u′′(r) + 2ru′(r)

]
g(r) dr (8.25)

Or, if the particles are ions with charge Z, the corresponding electric field expectation is

〈E · E〉 = (Ze)−2〈F · F〉 =
4πnkBT

Z2e2

∫ [
r2u′′(r) + 2ru′(r)

]
g(r) dr (8.26)

For the special case of a screened Coulomb potential, we have a Yukawa interaction,

u(r) =
Z2e2

r
e−κr =⇒ ∇2u(r) =

Z2e2κ2

r
e−κr = κ2u(r) (8.27)

so one finds for the expectation of the electric field strength,

〈E · E〉 =
4πnkBT

Z2e2
κ2

∫
r2u(r)g(r) dr = 4πnkBTκ

2

∫ ∞
0

rg(r)e−κr dr (8.28)

which is the formula used in the APEX model references (Iglesias et al. (2000b)).
In any case, the definition of the inner product,

〈E · E〉 ≡
∫ ∞
−∞

E2W (E)dE (8.29)
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may be used as a check for methodology producing an interaction potential u(r), its derivatives
u′(r), u′′(r), and a pair distribution function g(r) (Shaffer (2019)). In other words, investigating if∫ ∞

−∞
E2W (E)dE

?≈ 4πnkBT

Z2e2

∫ [
r2u′′(r) + 2ru′(r)

]
g(r) dr (8.30)

Which in our two case studies, aluminum and beryllium, had percent differences of ∼ 0.1% and
∼0.2% respectively.

8.3.3 Conclusion
In conclusion, the APEX model agrees with our MD algorithm using a Debye-Huckel interaction
potential of aluminum ions at 100eV, and is only slightly different from the same algorithm using a
DFT-calculated potential. The Debye-Huckel interaction at lower temperatures, however, (5eV and
50eV beryllium) disagrees substantially with the DFT-calculated potential. The satisfaction of the
sum rule is reassuring that the PAMD algorithm is working as it should, and the discrepancy of mi-
crofield distributions at low temperatures motivates looking further into the APEX approximation,
as it is widely used by experimentalists to make more informed decisions and measurements.

Michael Laraia is a fourth year student at the University of Minnesota studying physics with a
focus in computational physics.

Chase Hanson is a third year physics and math major at Arizona State University. He does
research in theoretical condensed matter, namely in density functional theory.
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Chapter 9

Quantum Simulations for Liquid Equation
of State

Team Members
Harry S. Chalfin and Amanda M. Nemeth
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Joshua Coe and Carl Greeff

Chapter Abstract

We ran simulations of separate microscopic systems of liquid beryllium and carbon to better under-
stand their thermodynamic properties, particularly their specific heat capacity at constant volume
as a function of temperature. We found that existing theoretical models do not agree very well
with our simulation results. There is, however, a certain degree of correspondence between the re-
sults from our high-temperature beryllium simulations and two models: jdjnuc2 and hightliq, with
the parameter α = 0.35. Our results could help scientists improve their models. Understanding
the thermodynamic properties of beryllium and carbon has practical applications, particularly in
inertial confinement fusion.

9.1 Introduction
We used the Vienna ab initio Software Package (VASP) to run quantum molecular dynamics
(QMD) simulations. The simulations ran by evolving each system forward in time according to a
modified version of Newton’s equations. The precise nature of the modification depended on which
of VASP’s virtual thermostats was chosen for a particular simulation. (Information about each ther-
mostat is given later in the Thermostats subsection (9.2.5) of the Theory section.) The Newtonian
forces were derived from the Kohn-Sham equations of Density Functional Theory (DFT) (Parr and
Yang, 1989). The Kohn-Sham equations provide a very strong approximation to Schrodinger’s
wave equation of quantum mechanics, making them well-suited to study systems of many quan-
tum particles. Once the evolution of each system had been simulated, the data could then be used
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Figure 9.1: Diagram of ICF experimental setup. Taken from Lindl et al. (2004)

to determine various thermodynamic properties, most notably internal energy (U ) and specific heat
capacity at constant volume (CV ). It is worth noting that in this report, we assume that all thermo-
dynamic quantities are intensive; all energies and heat capacities are taken to be per unit mass, per
particle, or per mole, even if not explicitly stated.

9.1.1 Inertial Confinement Fusion
Inertial confinement fusion experiments could soon be used to harvest nuclear energy in a con-
trolled laboratory setting. The process works as follows: a fuel material such as deuterium or
tritium is placed at the center of a sphere and is surrounded by a shell of an ablator material. The
entire setup is confined by lasers or x-ray beams, which exert a sufficiently strong pressure on the
system such that nuclear reactions in the central fuel region can take place, much as they do in the
core of a collapsing star. Two candidates for the ablator material are beryllium and carbon. They
start out in solid form, and shock waves created by the lasers or x-rays drive them into the liquid
state. It is for this practical reason that we have been interested in studying the thermodynamic
properties of liquid beryllium and carbon. See Figure 9.1.

9.1.2 Why Use Simulated Data?
Currently, scientists have a very good understanding of the equation of state and thermodynamic
properties, including CV , of solids and ideal gases. In solids, CV is well-described by the Debye or
Einstein models, with CV approaching 3R as the temperature approaches the melting temperature.
(R is the ideal gas constant.) The specific heat capacity of ideal gases is given by the equipartition
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Figure 9.2: Sample graph of CV as a function of T for a typical material. Notice how the rela-
tionship is poorly understood at temperatures where the material is in the liquid or non-ideal gas
phase. Taken from Burnett et al. (2018)

theorem from thermodynamics: 3
2
R for one mole of gas. However, our understanding of the

specific heat capacity of liquids and non-ideal gases is much weaker. It is often difficult, dangerous,
or expensive to heat metals higher than their melting temperatures in sufficiently large quantities
such that their properties can be studied in a conventional laboratory setting. See Figure 9.2.

We often resort to simulations to teach us about thermodynamic properties in fluids. The main
goal of this project has been to determine the shape of the CV vs. T graphs for beryllium and
carbon in this poorly understood temperature range.

9.2 Theory

9.2.1 Controlled Thermodynamic Values
Volume and Number of Atoms

Our simulations were designed such that the volume of the cube (often referred to as the “simula-
tion box”) in which the particles reside (V ) and the number of atoms (N ) were both held constant.

V was easily controlled because the particle coordinates were only permitted to be in a simu-
lation box of specified dimensions. This requirement would appear to imply that N could not be
conserved, as a particle would seemingly disappear if it ever reached a boundary of the simulation
box. To account for this, we imposed periodic boundary conditions on the simulation box: if a
particle ever reached a boundary in the simulation, it would vanish and reappear on the opposite
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edge, retaining its velocity and its other two spatial coordinates. Another perspective would be to
say that, at any moment during the simulation, the total number of particles in our system that had
“disappeared” at the boundaries would always be balanced out by the total number of particles that
had “appeared” at the boundaries.

This “particle conservation” feature also motivates us to view each simulated system as being
representative of a much larger system of particles exhibiting periodic behavior at all times in each
of the three spatial directions, with a period equal to the box length s. However, all the information
in this much larger system is effectively contained in the simulation box itself, due to the repetitive
nature of the overall system.

It should be noted, however, that this modification also affects the way in which the potential
energy of the system should be computed. The potential energy contribution to a system due to
the interaction between a pair of particles depends on the distance between the particles. But
in computing this distance, we had to take the periodic boundary conditions into account and
imagine that, for every particle at position (x, y, z), there were many “sister” particles at positions
(x+ls, y+ms, z+ns), where l,m, and n each could be any integer. (Recall that the simulation box
is a cube with side length s.) The “distance” between a pair of particles A and B in the simulation
must instead be viewed as the minimum distance between A and any of the “sister” particles of B,
including possibly B itself.

Temperature

The temperature T in our simulations was also controlled, but it was not necessarily held perfectly
constant throughout the simulation. The details of exactly how T was controlled in each simulation
depended on the choice of thermostat. However, the two thermostats which we primarily used
(Andersen and Langevin) were designed such that temperature would fluctuate canonically over
the course a simulation. Each of our systems was a canonical ensemble – it could exchange energy
with a heat reservoir with which it was in thermal equilibrium, but there was no free exchange
of particles (Bimalendu, 2002, 299). A canonical ensemble is characterized by a temperature
fluctuation pattern given by:

σT
2

〈T 〉2
=

2

3N
(9.1)

In a canonical system of about 100 particles, this formula tells us that the typical temperature
fluctuation σT should be approximately 8% of the temperature itself. (It should be noted that
the temperature must be measured on an absolute scale, such as the Kelvin scale, so that T = 0
corresponds to a temperature of absolute zero. Throughout this report, we will always measure
temperature in Kelvin.) With this small fluctuation, we could comfortably refer to the “temperature
of a system” as its average temperature throughout the simulation. Thus although the temperature
was not held perfectly constant throughout each simulation, we could still treat it as a controlled
variable.
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9.2.2 The Helmholtz Free Energy
It is often convenient to analyze a thermodynamic system using a thermodynamic potential whose
natural variables are those which are controlled in the system. In this case, the natural variables
are T , V , and N , so the relevant thermodynamic potential is the Helmholtz free energy (F ), which
from this point forth we will simply refer to as the “free energy.” The differential form of F is
given by:

dF = −SdT − PdV + µdN (9.2)

Here, S is the entropy, P is the pressure, and µ is the chemical potential of the substance in
question. (For the remainder of this report, we will assume that dN = 0. That is, the number of
particles in a given system never changes.) This allows us to ignore the chemical potential µ.) A
simple manipulation of this identity leads to the entropy S in terms of this F :

S = −
(
∂F

∂T

)
V

(9.3)

Now, when supplemented with the thermodynamic definition of temperature: T =
[(

∂S
∂U

)
V

]−1,
which can also be written as:

(
∂U
∂S

)
V

. Now, the specific heat capacity at constant volume CV
is defined as

(
∂U
∂T

)
V

, which can be expanded using the chain rule as
(
∂U
∂S

)
V

(
∂S
∂T

)
V

or simply
T
(
∂S
∂T

)
V

. Now, plugging in for S, we obtain:

CV = −T
(
∂2F

∂T 2

)
V

(9.4)

Viewing CV and F each as functions of T , this result easily enables us to use calculus to find one
function if we happen to know the other.

The system’s free energy at any given time can be calculated from three contributions: a
temperature-independent “cold part” (represented by φ), the free energy of the atomic nuclei, and
the free energy of the electrons:

F (ρ, T ) = φ(ρ) + Fnuc(ρ, T ) + Fel(ρ, T ) (9.5)

(Burnett et al., 2018).
This equation is often referred to as the “SESAME decomposition” or “SESAME model.” All
three contributions are dependent on the system’s density ρ and, implicitly, the number of particles
in the system and their elemental makeup.

Zero-Temperature Simulations

As its name suggests, the cold part is the only term in Equation 9.5 that contributes in the limit of
zero-temperature; it is equal to the internal energy of the system in this limit. The internal energy
in this limit could also be viewed as a free energy:

F = U − TS ⇒ F → U as T → 0 (9.6)
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The internal energy U is implicitly a function of T , so U is equal to the cold part only in this
particular limit. In addition to our at-temperature simulations, we ran simulations (also based
on the Kohn-Sham equations) for a static configuration of nuclei, using an electron temperature
of 11.6 K. This electron temperature is low enough that it can be effectively regarded as the zero-
temperature limit. Analysis of the data from these zero-temperature simulations could then be used
to calculate the cold part. With the electrons at this near-zero temperature, the Fel term in equation
9.5 vanishes. One may be tempted to also ignore the Fnuc term, but this would be incorrect, as it
is only the temperature of the electrons which has been set to 11.6 K. The thermal properties of
the nuclei have been completely ignored to this point and can still be added in manually. There
are two contributions to Unuc: one is 3

2
RT , the thermal energy that would be present if the fluid in

question were an ideal gas. The second contribution is derived from the at-temperature simulations,
which are canonically distributed. Once Unuc is known, one can determine Fnuc by inserting nuc
subscripts into equation 9.4 and the equation which defines CV :

CV =

(
∂U

∂T

)
V

(9.7)

These zero-temperature simulations underscore one of the advantages in carrying out simu-
lations on virtual systems rather than performing experiments on physical systems: certain para-
maters can be set manually in a way that would be all but impossible in a real laboratory. Specif-
ically, it is difficult to independently control the temperatures of the electrons and the nuclei in a
real system of about 100 atoms. And even if an experimentalist were to successfully do this, the
electrons and nuclei would quickly equilibriate due to the steep temperature gradients.

9.2.3 The Velocity Autocorrelation Function
Simple physical systems often have analytical solutions to their equations of motion. With a system
as complex as about 100 particles, however, the equations of motion must be solved numerically
by dividing the simulation time into many small but finite time steps. In general, the smaller the
time step is chosen to be, the more accurate the simulation is. However, choosing a very small
time step is computationally expensive if the code is to run for a given amount of simulation time.
(By “simulation time,” we mean the amount of time it would take for a real system of beryllium or
carbon particles to evolve. The simulation time has nothing to do with the amount of time it takes
for a simulation to run, known as the wall time, which is many orders of magnitude greater. All
time intervals cited in this paper refer exclusively to simulation time.)

In our simulations, we used a time step of 0.2 fs, which is small even on quantum scales.
However, this small time step led to having successive system configurations which were highly
correlated, effectively introducing a certain degree of redundancy into the data. If not taken into
account, this redundancy would lead to artificially low uncertainties in the results.

To estimate the degree of redundancy, we made use of the velocity autocorrelation function
(VAC): for any given time, compute the inner product of the 3N -dimensional velocity vectors as-
sociated with the system at the initial time and at the given time; then normalize the function such
that the maximum value, corresponding to the initial state of the system, is exactly 1. The earliest
moment at which the VAC drops to zero provides a liberal estimate of how much time it takes
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Figure 9.3: A sample velocity autocorrelation function. Notice how the higher temperatures have
longer correlation times.

for the velocities of the particles to be, on average, neither correlated nor anticorrelated with their
original velocities. Let us denote the time interval between the initial time and this moment the
correlation time. If we were to just analyze the system configurations at intervals of the correlation
time, we would find no redundant data but might consequently leave out some non-redundant data,
as some particle velocities may have taken less time to decorrelate. For this reason, we decided to
analyze configurations at intermediate time intervals, less than the correlation time but greater than
the time step. See Figure 9.3.

9.2.4 The Radial Distribution Function
The radial distribution function g(r) measures the distance between every pair of particles and
plots these distances on a histogram, which is then averaged over all configurations (extracted at
time intervals determined by the VAC). If our system were a perfect solid crystalline structure at
absolute zero, the distance between neighboring particles would be constant throughout the system,
and so we would expect to see a very sharp peak in g(r) at this distance value. Due to the orderly
geometric pattern, there would also be a number of other distance values between particle pairs
which would be very common throughout the structure as well, with each such distance value
corresponding to a sharp peak in the graph of g(r). If, by contrast, our system were an ideal gas,
which has no orderly geometric structure, the particles would be very far apart and would not
interact with one another. The position of any given particle would be totally independent of the
positions of the others. However, if we were to describe three-dimensional space by first defining

177



CHAPTER 9. QUANTUM SIMULATIONS FOR LIQUID EQUATION OF STATE

an origin and then surrounding it with an enormous number of very thin concentric spherical shells
(labeling each shell by its radius r), the volume of each shell would be given by 4πr2∆r, where
∆r represents the small but finite shell thickness. That is, there would be more volume at farther
distances from a particle at the origin, and so the radial distribution function would increase as r
increased.

A liquid is typically an intermediate case between these two extremes. In a liquid, the particles
are relatively tightly packed but still have a sufficiently high degree of mobility such that current
neighboring particles might slip past one another and no longer be so close to one another. There
are still distance values which are favored in a liquid’s radial distribution function, but the corre-
sponding peaks are more modest than those of a crystalline solid – there is a small range about
each of these distance values at which there are likely to be many pairs of particles. For instance,
the distance between a particle and its neighbor is likely to be within a relatively narrow range, the
distance between a particle and its neighbor’s neighbor (“second neighbor”) is likely to be within
a slightly broader range, and so on. That means that, at increasing distance values, the peak height
shrinks and the peak width grows. At very large distance values, it becomes nearly impossible
to distinguish between the favored distance values and the disfavored ones, as the high-entropic
nature of the liquid virtually washes out any patterns. The hotter a liquid is, the more closely its
behavior resembles that of an ideal gas, with almost no noticeable peaks and troughs in the graph
of its radial distribution function. By contrast, the colder a liquid is, the more closely its behavior
resembles that of a perfect crystalline solid, with sharp peaks and troughs in the graph of its radial
distribution function. However, the aforementioned effect where volume increases at larger r still
exists and must be taken into account. Also, the effect of “sister” particles due to the periodic
boundary conditions described in the Thermodynamics section must also be taken into account.

Typically, a particle in a liquid is approximately a certain distance from its nearest neighbor,
from its neighbor’s neighbor, and so on. At lower temperatures, the particle configuration more
closely resembles that of a solid crystalline structure, making the distances between neighboring
particles more uniform and predictable, producing more pronounced peaks and troughs in the
plot of g(r). (See Figure 9.4). The temperature dependence of the radial distribution function
underscores the importance of running simulations at temperature even though the main results
come most directly from the zero-temperature simulations.

9.2.5 Thermostats

In QMD simulations, controlling certain variables helps ensure that the system is physically re-
alistic as possible. As stated earlier in the Controlled Thermodynamic Values subsection, we
controlled the temperature T , the volume of the simulation box V , and the number of particles
N . To control these variables (particularly T ), we used three different virtual thermostats, each
of which operates in its own unique way. (Each simulated system was controlled by exactly one
thermostat.) We primarily used the Andersen and Langevin thermostats to study beryllium and
carbon, respectively.
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Figure 9.4: Radial distribution function g(r) for carbon at three selected temperatures. Notice
how the peaks and troughs are more heavily pronounced at lower temperatures because liquids at
lower temperatures more closely resemble crystalline solids.

Andersen Thermostat

The Andersen thermostat is a stochastic thermostat in which the system is thermally coupled to
an imaginary heat bath under the desired temperatures. This coupling is represented by stochastic
collisions that act occasionally on particles selected at random. This thermostat is defined by a
collision probability:

P (t) = νe−νt (9.8)

where t is the simulation’s time step and the product νt is determined by the ANDERSEN PROB
flag in VASP. The ANDERSEN PROB parameter can range from 0 to 1, with 0 corresponding
to a microcanonical ensemble (no collisions at all, which would thus hold energy constant) and 1
corresponding to a maximum frequency of collisions. (VASP).

Langevin Thermostat

The Langevin thermostat is a stochastic thermostat which acts as a modification of Newton’s equa-
tions (in a Hamiltonian form) as follows:

ṙi =
pi
mi

ṗi = Fi − γipi + fi (9.9)

Here, Fi is the force acting on particle i due to the interaction potential, γi is the friction coefficient,

179



CHAPTER 9. QUANTUM SIMULATIONS FOR LIQUID EQUATION OF STATE

which is an adjustable parameter in our VASP input files, and fi is a random kicking force due to
friction (VASP).

Nosé-Hoover Thermostat

The Nosé-Hoover Thermostat is a deterministic thermostat which modifies the Hamiltonian by
introducing an extra degree of freedom (VASP). This acts as an extended Langrangian, which
contains artificial, fictitious coordinates and velocities (Frenkl and Smit, 2002).

It is worth noting that both sets of simulations were initially run under Nosé-Hoover thermostat
parameters. The stochastic thermostats were later introduced as an alternative to this method.

9.3 Simulations
Many trials were run in two thermostats (Nosé-Hoover and Andersen for beryllium; Nosé-Hoover
and Langevin for carbon) to zero in on the appropriate time step and parameters to use for our
simulations. We also ran corresponding simulations in the microcanonical ensemble to help select
the proper time step for our simulations. This helped verify that we would be conserving energy
in our longer trials, particularly in the case of Nosé-Hoover simulations.

We also determined the number of bands to use in each calculation for each temperature. Two
aspects are represented in these bands: first, these bands are built on the diagonalization of the
electronic Hamiltonian, which determines eigenvalues and eigenfunctions. This represents our
one-electron wavestates. Second, the bands are thermally occupied according to the Fermi-Dirac
distribution, since the electrons in our simulations were all at finite temperature. The higher the
temperature, the more higher-energy bands are populated. At sufficiently high energies, the oc-
cupation level eventually drops to zero, which is where we determined the cutoff number for our
number of bands to use. Including too few bands in our simulations would affect our density.
Including much more than this cutoff number would increase the cost of our calculation without
improving the overall accuracy of the simulation. Thus it was important to determine an appropri-
ate value for this cutoff.

We will now look at some of the conditions under which our simulations were run:

Beryllium:

• 128 randomly-oriented beryllium atoms in a simulation box

• Simulation box dimensions: 10.01 Å on each side

• Temperatures ranging from 2000 K to 20,000 K at intervals of 2000 K

• All simulations were run at a constant density of 1.91 g/cm3.

• Number of bands ranged from 298 (2000 K) to 656 (20000 K)

• Time step of 0.2 fs
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• For the Andersen thermostat: an ANDERSEN PROB of 0.2 was used - this was chosen as
a value that would introduce an ideal amount of stochastic quantum noise into the laws of
evolution.

Carbon:

• 100 randomly-oriented carbon atoms

• Simulation box dimensions: 8.29 Å on each side

• Temperatures ranging from 6000 K to 30,000 K at intervals of 2000 K

• All simulations were run at a constant density of 3.5 g/cm3.

• Number of bands ranged from 304 (6000 K) to 604 (30,000 K)

• Time step of 0.2 fs

• For the Langevin thermostat: a gamma value of 10 was used - trials showed this value to
have the best convergence of oscillations around the proper temperature it was supposed to
be sampling.

Our goal was to calculate the constant volume heat capacity based off our simulation data.
Following our SESAME model (Equation 9.5), we could not calculate the free energy with VASP
alone. VASP could only give us electronic free energies, not total free energies. However, VASP
did give us total internal energies (U ). We could use the internal energies of the nuclei to differ-
entiate and find CV (nuc). With CV (nuc), we could integrate twice to obtain the free energy of the
nuclei:

CV (nuc) =

(
∂Unuc
∂T

)
V

= −T
(
∂2Fnuc
∂T 2

)
V

(9.10)

In order to get CV (nuc), we used the following steps:

• We ran all our simulations at temperature for each given temperature range for beryllium and
carbon.

• Once enough data had been generated, we pulled configurations from our runs at temperature
based on the correlation time.

• Single point calculations were then run on these pulled configurations at zero electronic
temperature.

• The internal energies were averaged, divided by the number of atoms in the simulation, and
the thermal kinetic energy (3

2
RT ) was added back in. This gave us the cold curve and thermal

nuclear contribution of our SESAME model. See Figure 9.5.
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• These results were fit to a polynomial (in our case, a Chebyshev polynomial) and differenti-
ated to give us CV (nuc). See Figure 9.6.

The fundamental postulate of statistical mechanics played an important role in our analysis.
It states that, given a system in a specified macrostate, the system is equally likely to be in any
microstate consistent with that macrostate. The macrostate is characterized by the overall thermo-
dynamic properties: in our case the temperature and volume. As we have seen, the volume was
held constant and the temperature was held nearly constant over the course of each simulation, so
every system configuration could be treated on an equal footing with every other. At no particular
moment during the simulation was the system configuration unique in any significant way. This
enabled us to compute the averages of various thermodynamic quantities over the course of each
simulation without having to worry about awarding a privileged status to any particular system
configuration.

9.4 Results
We generated enough data to simulate several picoseconds of evolution. Across the range of tem-
peratures studied, the correlation time ranged between 4.0 and 4.5 fs for beryllium and between 50
fs and 100 fs for carbon. We decided to analyze configurations at intervals of 2.0 fs for beryllium
and 10 fs for carbon (see section 9.2.3) for our single point calculations.

Once we had calculated results for CV (nuc), we could then compare our results to several the-
oretical models commonly used at LANL. One is known as jdjnuc. This model has two variants,
jdjnuc1 and jdjnuc2, which are the result of an interpolation of free energies. The main difference
between these two variants is the number of regions the interpolations are broken into. jdjnuc is
broken into two regions, while jdjnuc2 is broken into four regions (Johnson, 1991).

The other model is known as hightliq and is based on the interpolation of CV (nuc):

CV (nuc) =
3

2
k

[(
T

Tm

)−α
+ 1

]
(9.11)

Here, Tm represents the melting temperature of the material and k once again represents Boltz-
mann’s constant. α is the only adjustable parameter of this model. (0 < α < 1) (Chisolm et al.,
2005). This α parameter is based on experiments conducted on liquid mercury. (Unlike other
metals, mercury is liquid at room temperature, so it is not difficult to study its liquid properties in
a laboratory.) α = 0.35 for mercury, so this is considered to be a default value for α in the hightliq
model.

Since the theoretical models express temperature as a ratio with the melting temperature of
the material in question, it made sense to express our results in terms of this ratio, rather than in
terms of the temperature outright. The melting temperatures for Be and C are 1560 K and 6530
K, respectively. For beryllium, at temperatures higher than about 7Tmelt, both jdjnuc models and
the hightliq model based on liquid mercury agree relatively well with our simulated results. At
lower temperatures, however, the agreement is considerably weaker. For carbon, there is not much
agreement at all. Our carbon results exhibit no correspondence with either jdjnuc model, and the
hightliq models only begin to compare reasonably well for high values of α (close to 1). We also
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Figure 9.5: Plot of internal energy per atom (eV) as a function of temperature (K) for beryllium
and carbon

observed that CV (nuc) exceeds the classical limit of 3R in both materials. This is not unheard of, as
it has also been observed in quartz and fused silica, among other substances (Eggert et al., 2009).
See Figure 9.6.

9.5 Conclusions
First-principles simulations allow one to study phenomena which might be impractical to study in a
real laboratory for a variety of reasons. We used QMD simulations to examine the thermodynamic
properties of liquid beryllium and liquid carbon at high temperatures. Consistency of our results
with current models is not very strong, but these benchmark results can be used to improve models
in the future.

It is also worth emphasizing that the simulation times studied here are many orders of mag-
nitude shorter than the actual amount of time it took for the computer simulations to run and for
us to complete this project. That it can take a computer so much more time to calculate the phys-
ical evolution of a relatively simple system than Nature takes to evolve systems of much greater
complexity all the time is a testament to the remarkable elegance and beauty of Nature.

9.6 Acknowledgments
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Figure 9.6: Plots of specific heat capacity at constant volume as a function of temperature for
beryllium (upper) and carbon (lower). The solid red curve in the upper plot and the solid blue
curve in the lower plot represent the results of our simulations based on Density Functional Theory,
while the other curves are theoretical models for comparison.
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Potential Models
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Chapter Abstract

Optical models provide a potential that can model interactions between nucleons. They are parametrized
based on the nuclear reaction using quantities such as incident particle, target, incident energy, and
then are incuded within the Schrödinger equation for a system. Using a numerical solver, we can
predict the observables of the reaction, such as reaction cross-sections and emitted spectra. In
our analysis, we focused on comparing the predictions made by various optical models. We rated
how well they reproduced experimental cross-section data and compared the emitted gamma and
neutron spectra they predicted. We found that the Koning-Delaroche model generally has the most
accurate cross section predictions, but the Becchetti-Greenlees model predicted nearly identical
fission spectra. Our analysis shows that changing which optical model a fission code uses will do
little to change the predictions it makes, as most optical models agree very well for the energies at
which fission fragments are emitted.

10.1 Introduction
Optical model potentials (OMPs) are phenomenological approximations of the attractive force
between nucleons. The true nature of the force is unknown and extremely complicated, so these
models offer a simpler potential that fits the expected behavior from which forces can be derived.
Most OMP work for incident particle energies from about 1 keV to 200 MeV. They are fit to
experimental nuclear data, such as total reaction cross sections, differential eleastic cross sections,
and polarizations observables. CoH3 (Kawano et al., 2016) is a program that employs OMPs
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created by various authors (Wilmore and Hodgson, 1964; Koning and Delaroche, 2003; Becchetti
and Greenlees, 1969), to predict reaction cross sections. Since the same physics models in CoH3

are used in codes such as CGMF (Talou et al., 2017), understanding the predictions they make
allows us to better comprehend the role they play in more complex calculations.

CoH3 uses the statistical Hauser-Feshbach (HF) formalism (Hauser and Feshbach, 1952) along
with an optical model solver that accounts for coupled channels, something most other HF codes
lack. CoH3 uses this to solve the Schrödinger equation and then provides cross sections, spectra,
and other observables based on input parameters (Kawano et al., 2016). All of our calculations
were done with CoH3 and only considered incident neutrons.

We first evaluated which optical model was the best at reproducing experimental data. This
was done by examining the predictions made by various OMPs and using χ2 analysis to rate the
agreement between the models and data. This allowed us to evaluate the validity of each model. We
then compared the predictions the models made for regions where we had no data and examined
the differences in these predictions. Our ultimate goal was to observe how changing the optical
model affects the final result of more complex calculations, such as the predicted neutron and
gamma spectra resulting from fission events.

10.2 Background
Optical potentials are used to model the interaction between light projectiles and heavy targets.
Volume terms have the form of a Woods-Saxon function, which can be expressed as

f(r) = −V0/(1 + e(r−R)/a) (10.1)

where r is the variable that describes radial distance, V0 is the depth of the potential well, R is
the effective radius, and a is the diffuseness (Koning and Delaroche, 2003). Surface terms are
expressed as derivatives with respect to r. The volume elements are strongest over what would be
the volume of the nucleus and the surface element is strongest at the surface of this volume. The
key variables of the OMP are generally parameterized using several key features of the system,
like the neutron number N , proton number Z, incident particle type, and incident particle energy.
The Becchetti-Greenlees model differs from most other models in that it explicitly includes isospin
dependence in both the real and imaginary terms (Becchetti and Greenlees, 1969).

Although potentials are generally purely real, the optical potential utilizes both real and imagi-
nary components to phenomenologically model more complicated effects that take place in nuclear
reactions. The real component consists only of a volume term that models elastic scattering. All
other reaction channels are accounted for in the imaginary component’s volume and surface terms
(Koning and Delaroche, 2003). It functions as a sort of ”catch-all” to correct for all the processes
left out by the real component and changes the reaction cross sections accordingly.

What differentiates all optical models from one another is how they are parameterized. Gener-
ally, a reasonable function is proposed for each variable in the Woods-Saxon function and this is
function is fit to experimental data, usually with least squares regression. Options range from sim-
ple linear dependencies to complex functions of functions that ultimately produce quartic terms.
For example, the Becchetti-Greenlees model has a potential well depth for a given nucleus and
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10.2. BACKGROUND

Figure 10.1: Example of a Woods-Saxon function (blue) and its derivative with respect to r (or-
ange). The parameters are V0 = 10 MeV, R = 6 fm, and a = 0.62 fm. V0 controls the depth of the
well, R controls the radius of the well, and a determines how sharp the step is.
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incident neutron of
VR = 56.3MeV − 0.37E + 24MeV (N − Z)/A (10.2)

where all terms are in MeV, E is the energy of the incident neutron and N , Z, and A take on their
standard meanings for nuclei. The Koning-Delaroche model uses a more complicated one, given
by

VR = v1[1− v2(E − Ef ) + v3(E − Ef )2 − v4(E − Ef )3] (10.3)

where Ef is the Fermi energy of the nucleus and v1−4 are parameters that are either constant or
dependent on N , Z, or A. The depth of the potential well corresponds to the strength of the
interaction, but unlike most potentials, it depends on the energy of the incident particle.

Isospin is an example of an effect that optical models can choose to include in their parameteri-
zation. It behaves in nuclear systems in a way similar to spin. It is denoted by I and chiefly used to
describe protons and neutrons as the same particle with different isospin projections (I3 = ±1/2).
It combines like spin, and different nuclear states can be distinguished by a different total isospin.
A given nucleus, however, has a set isospin projection of I3 = (Z−N)/2 (Warner et al., 2006). The
Becchetti-Greenlees potential explicitly accounts for isospin dependence (Becchetti and Greenlees,
1969) while the others simply let the imaginary component of the the potential handle it.

To make predictions with a given OMP, one simply feeds it the correct parameters. This pro-
duces the appropriate potential for the system, allowing us to solve the corresponding Schrödinger
equation numerically. We can then extract the S-matrix from the solution, which in turn is used
to calculate observables like cross sections. Reaction cross sections in nuclear physics give the
probability of a specific interaction happening in terms of area, usually barns (1 b = 10−24 cm2).
The cross sections of different processes can be added together to give a total cross section, which
gives the interaction rate when multiplied by the beam flux.

The HF formalism can then be used to calculate the outcome of a given reaction. The exchange
of energy between the incident particle and the target nucleus can excite the nucleus and cause it
to emit particles, usually either neutrons or gamma rays. With this method, we can predict the
production spectra for these particles for any given initial conditions. The optical models can be
used to calculate the probabilities of interactions, but the HF formalism is needed to determine
what happens as a result of these interactions (Hofman et al., 1974).

10.3 Reaction Cross Sections
We explored the accuracy of the available optical models by comparing them to experimental scat-
tering data for a variety of isotopes and incident neutron energies. We chiefly examined the pre-
dicted total interaction cross-section as a function of the incident neutron energy and compared the
result to experimental data from the EXFOR database (Sonzogni, 2019). We utilized χ2 analysis,

χ2 =
n∑
i=1

(f(xi)− yi)2

n− d , (10.4)

with n as the number of data points, f(x) as the predicted cross section as a function of incident
energy, xi as the incident energy for a point, and yi as the corresponding measured cross section.
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We used this to determine how well the data was described by the model, looking at the scores for
both individual data sets and the entirety of what was available for given parameters. Examples of
nuclei we examined are shown in Figures 10.2, 10.3, 10.4, 10.5, 10.6, and 10.7.

Figure 10.2: Experimental cross section data for 140Ce compared with the optical models of
Wilmore, Becchetti, and Koning. The χ2 values of the model to the data sets listed are given
next to the model in the legend.
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Figure 10.3: Experimental cross section data for 135Cs compared with the optical models of
Wilmore, Becchetti, and Koning.
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Figure 10.4: Experimental cross section data for 127I compared with the optical models of Wilmore,
Becchetti, and Koning.
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Figure 10.5: Experimental cross section data for 98Mo compared with the optical models of
Wilmore, Becchetti, and Koning.
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Figure 10.6: Experimental cross section data for 147Pm compared with the optical models of
Wilmore, Becchetti, and Koning.
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Figure 10.7: Experimental cross section data for 235U compared with the optical models of
Wilmore, Becchetti, and Koning.

Wilmore Koning Becchetti
Sum of normalized scores 23.06 18.52 28.42
2,1,0 scoring 72 90 42
1,0,0 scoring 16 34 16

Table 10.1: Scores for Wilmore, Koning, and Becchetti optical models based on indicated scoring
criteria. 2,1,0 and 1,0,0 indicate the scores given to each optical model for the lowest normalized
χ2 value.

A summation of all the normalized scores for each optical model and data set is included
in the first row of Table 10.1. The sum of normailzed χ2 was calculated by summing the χ2

values for a data set and dividing each score by the sum. This normailzation ensures that data sets
characterized by large discrepancies would not dominate the analysis. Koning had the lowest - or
best - normalized score while Becchetti had the worst. We also tallied up how many data sets each
model matched with both a 2,1,0 scoring scheme and a 1,0,0 scoring scheme. In the 2,1,0 scheme,
the lowest normailzed χ2 value got 2 points and the second best got 1, while in the 1,0,0, only
the best match got a point. Koning consistently outperformed Wilmore and Becchetti by both of
these metrics. The Wilmore and Becchetti models tied in the 1,0,0 scheme, but the 2,1,0 scheme
indicates that Wilmore more consistently reproduced the data examined.
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Further analysis was conducted on the differences between optical models. We primarily ex-
amined the difference between the Koning-Delaroche model and the Becchetti-Greenlees model
due to how differently they were parameterized. The the total reaction cross section for each model
was calculated and the difference squared in order to highlight the discrepancies between the two
models.

Figure 10.8: Difference between Becchetti-Greenlees and Koning-Delaroche models plotted as a
function of energy for different isotopes of Sn approaching the neutron drip line. The models agree
very well from roughly 9 to 14 MeV, which is where we expect to see a good portion of fission
fragments.

As Figure 10.8 demonstrates, the optical models display noticeable differences towards higher
and lower energies, but have a range of about 10 to 30 MeV in which they agree very well at
both stability and close to the neutron drip line. This range is important because most fragments
resulting from fission are emitted in this energy range. Accordingly, changing the optical model
used to examine the interactions of fission fragments should have minimal effect.

10.4 Emission Spectra

The gamma and neutron emission spectra caused by inelastic scattering of incident neutrons was
investigated using CoH3. In our analysis, all gamma and neutron emissions were included. CoH3

generated the predicted emission spectra for each incident energy and these spectra were assigned
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a weight according to a Maxwellian distribution given by

f(Ei) = Eie
Ei/E0 (10.5)

where E0 is the mode energy (Das et al., 2008). A Gaussian distribution was used instead if the
mean incident energy was higher than 5 MeV. Examples of individual spectra are shown in Figures
10.9 and 10.10. We then calculated the total predicted spectra by summing all the spectra scaled
by their respective weights, giving a total spectrum of the form

I(Er) =
∑
i

Ii(Er)f(Ei) (10.6)

where Ii is the spectra for a given incident energy Ei, Er is the energy of the outgoing radiation,
and f(Ei) is the energy distribution associated with the mode energy or the reported beam energy
by the data set. Examples of these total spectra are shown in Figures 10.11 and 10.12. While
an integration over the incident spectrum would have been more exact, it also would have been
analytically intractable and more computationally expensive.

We were able to compare our predicted gamma spectra to experiments as there was data avail-
able. Since there is less data on neutron emissions, however, we instead looked at how the models
evolved as nuclei become more neutron rich, the region of interest for fission fragments. We com-
pared spectra for different models when changing the neutron number, proton number, and incident
energy. As we increased the incident energy to 10 MeV and beyond, only Gaussian distributions
were used.
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Figure 10.9: Gamma emission spectra for 95Kr generated by incident neutrons with energy indi-
cated in the legend. These spectra were weighted by a Gaussian weight factor, as shown in the
legends, and combined to form a total spectra for a given nucleus.
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Figure 10.10: Neutron emission spectra for 96Rb generated by incident neutrons with energy indi-
cated in the legend.
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Figure 10.11: Total gamma emission spectra for 95Kr generated by incident neutrons with average
energy of 10 MeV and a Gaussian distribution with a 6 MeV standard deviation. Energies sampled
ranged from 6 MeV to 14 MeV with a 0.1 MeV step. Each spectrum here reflects a summation of
weighted spectra in such as those in Figure 10.9
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Figure 10.12: Total neutron emission spectra for 96Rb generated by incident neutrons with average
energy of 20 MeV and Gaussian distribution with a 6 MeV standard deviation. Sampled energies
ranged from 16 to 24 MeV with a 0.1 MeV step.
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We explicitly tested how the models varied as certain parameters were changed with all other
held constant. For example, we looked at the effect of moving from an even to odd number of
neutrons for a given energy in Sb. In Fe, we examined the effects of increasing the neutron number
while holding the incident energy constant at 20 MeV. We also calculated an exponential decay
constant for each spectrum past 2 MeV so we could compare how quickly the probabilities of
emission decrease as outgoing energy increases.
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Figure 10.13: Emitted gamma (top) and neutron (bottom) spectra for Sb isotopes for 10 and 20
MeV incident neutrons for both the Koning-Delaroche and Becchetti-Greenlees models. The decay
constant is listed next to the optical model along with the the target mass and incident energy.
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Figure 10.14: Emitted gamma (top) and neutron (bottom) spectra for different Fe isotopes and
incident neutrons at 20 MeV for the Koning-Delaroche and Becchetti-Greenlees models. The
decay constant is listed next to the optical model along with the the target mass and incident
energy.
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The Becchetti-Greenlees model consistently predicted fewer emitted gammas and neutrons at
higher energies, as shown in both Figures 10.13 and 10.14. This is consistent with our earlier re-
sults since the Becchetti-Greenlees model predicts lower reactions cross sections than the Koning-
Delaroche model for higher incident energies. This means that the spectra that contribute the most
to higher energy emissions are weighted less and therefore the total spectra will be skewed more
towards lower energies. As Figure 10.13 shows, a lower incident mean energy also caused a higher
decay constant.

A common trend in our results is a series of evenly spaced peaks in the neutron emissions
spectra, easily seen at higher energies in Figure 10.14. These correspond to the energies where we
sampled the incoming energy spectra and would ideally smooth out if the spectra was sampled at
a small enough spacing. We also observe a steep drop off in the gamma spectra that changes with
the mass of the nucleus in Figure 10.14. Moving to a higher neutron count pushes both increases
the size of the step and lowers the energy at which it occurs. We believe that this may be due to
CoH3 only accounting for a single spin for the nucleus, but ultimately this effect requires further
investigation.

10.5 Fission Yields

After analyzing the gamma and neutron emissions spectra for various individual nuclei, we ex-
tended our analysis to analyze multiple nuclei simultaneously. We took a list of nuclei produced
in a given fission process along with the probability of its production and calculated a neutron
spectrum for each in the manner described in the previous section. The production probabilities
for Cf fission products are shown in Figure 10.15. We then added the spectra together weighted
by the probability of the nuclei’s production. This gives a comprehensive output spectrum for a
given fission process and was done for both neutrons and gamma rays. We primarily focused on
the Becchetti-Greenlees and Koning-Delaroche potentials as these showed the greatest differences.
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10.5. FISSION YIELDS

Figure 10.15: Contour of production probability for Cf fission products.

In our analysis, we implement a threshold for the production probability of nucleus so that
anything below it was not considered. We examined the effect of changing this threshold and
observed that a threshold of 10−2 captured most of the structure in the spectra and increasing the
threshold beyond 10−3 produced almost unobservable effects. This is consistent with the ”Los
Alamos model” of predicting yields in which only the most probable production pair of nuclei are
considered.
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Figure 10.16: Predicted spectra for the fission products of 252Cf with an average excitation energy
of 15 MeV.
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Figure 10.17: Ratio of the Becchetti-Greenlees model to the Koning-Delaroche model predicted
spectra for the fission of 252Cf.

The spectra produced by the two optical models, as shown in Figure 10.16, appear nearly
identical. The shapes are the same and discrepancies largely come from the difference in predicted
reaction cross sections. These differences, however, are much more apparent when taking the ratio
of the two predictions, shown in Figure 10.17. The Becchetti-Greenlees model still predicts fewer
higher energy emissions when considering the spectra for dozens of nuclei, showing that the trend
observed in 10.13 holds for most nuclei. We also observe the step in the gamma spectra seen
previously in Figures 10.13 and 10.14.

It is important to note that our calculations are done in the center of mass frame for the frag-
ments and incident neutrons. Since these fragments are ejected from the fission process, they are
energetic and moving. As a result, their spectra are subject to kinematic boosting when viewed in
the lab frame, which would shift the spectra to higher energies. We, however, did not have enough
information available to attempt modelling these effects.

10.6 Comparison to CGMF
Our process allows us to make a crude prediction of the outgoing neutron and gamma energy
spectra. To evaluate it, we turned to a an existing code called CGMF which is capable of making
similar predictions (Talou et al., 2017). CGMF employs the Koning-Delaroche model as its default
optical model, so the Koning-Delaroche CoH3 caclulations were compared with the CGMF output.
As opposed to calculating observavles from an individual interaction, CGMF uses a Monte Carlo
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Figure 10.18: CGMF excitation energy distribution (blue) versus the Gaussian energy distribution
used in our fission calculations (red).

method to sample fission fragment properties and takes into account correlations between observ-
ables. The spectra it predicts can also be translated to either the lab frame or the center-of-mass
frame of the fragments. The output from CGMF for Cf-252 spontaneous fission is plotted in the
center-of-mass frame as that is the frame our results from CoH3 are in.

Our predictions made with CoH3 follow the shape of the spectra predicted by CGMF fairly
well as shown in Figure 10.19. In a logarithmic scale, they seem almost identical. However,
when comparing the ratio of the two predictions ranges between 0.5 and 1.5 for both neutrons and
gammas up until higher energies, where the agreement worsens. Our predicted gamma spectrum
has a step at around 8 MeV, which is consistent with our results in the previous sections. CGMF
considers a distribution of spins for the fission fragments, so this may be why it does not have this
feature.

10.7 Conclusion
The Koning-Delaroche model generally outperforms other optical potentials in terms of predicting
the total cross sections measured by significant margin. It models both low energy and high energy
cases better than its counterparts and generally agrees with them around 1-10 MeV. This is likely
due to the more complex parameterization and the greater availability of data for least squares
regressions as it the most recent one we tested. The Becchetti-Greenlees model, despite its explicit
isospin dependence, appears be to the least accurate.
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Figure 10.19: CGMF comparison with CoH3 for gamma and neutron spectra of 252Cf. CoH3

utilized a 0.0001 threshold for Cf fission products. For each product, we sampled energies from
8 to 22 MeV with a 0.1 MeV step from the Gaussian shown in Figure 10.18. The CGMF spectra
was made with 360,000 events.
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The optical models generally predict similar gamma ray and neutron spectra for a given reac-
tion. They predict the same peaks and rarely differ by more than 10%. The Becchetti-Greenlees
model, despite being significantly different than the Koning-Delaroche model, still closely matches
it. The Becchetti-Greenlees model does consistently predict a sharper fall of on all spectra for all
nuclei in that it has higher production cross sections at low energies and lower ones at high ener-
gies.

By combining the spectra from different nuclei, CoH3 generated a crude approximation of
the total energy spectra for emitted gammas and neutrons released from a fission reactions. The
predicted cross sectionsand emitted spectra varied insignificantly with different optical models.
There was good agreement between the spectral shapes on a log scale generated by both CoH3 and
CGMF, but the discrepancy between the values reached up to 50%. While optical models seem
to have little effect on the overall calculation of fission observables, other models such as level
densities, gamma strength functions, and spin distributions should be compared to evaluate their
effect on larger fission codes.

Cameron S. Parker is an rising senior at the University of Oklahoma, majoring in physics. He
plans to attend graduate school for physics after graduating.

Stefano Pineda received his B.S. mechanical engineering from the United States Naval Academy.
He will be attending a masters program for mechanical engineering at MIT in the fall.

Bibliography
F.D. Becchetti and G.W. Greenlees. Nucleon-nucleus optical-model parameters, A > 40, E < 50

MeV. Physical Review, 182, 1969.

Ramkrishna Das, Saibal Basu, and Akhtar Shaikh. Measurement of temperature of neutrons ema-
nating from H2O ice moderator at 77 K. Journal of Neutron Research, 16:55–60, 03 2008. doi:
10.1080/10238160802583372.

Walter Hauser and Herman Feshbach. The inelastic scattering of neutrons. Phys. Rev., 87:366–
373, Jul 1952. doi: 10.1103/PhysRev.87.366. URL https://link.aps.org/doi/10.
1103/PhysRev.87.366.

H.M. Hofman, J. Richert, J.W. Tepel, and H.A.Weidenmüller. Direct reactions and Hauser-
Feshbach theory. Annals of Physics, 90:403–437, 1974.

T. Kawano, R. Capote, S. Hilaire, and P. Chau Huu-Tai. Statistical hauser-feshbach theory with
width-fluctuation correction including direct reaction channels for neutron-induced reactions at
low energies. Phys. Rev. C, 94:014–612, Jul 2016. doi: 10.1103/PhysRevC.94.014612. URL
https://link.aps.org/doi/10.1103/PhysRevC.94.014612.

A.J. Koning and J.P. Delaroche. Local and global nucleon optical models from 1 keV to 200 MeV.
Nuclear Physics A, 713:231–310, 2003.

212

https://link.aps.org/doi/10.1103/PhysRev.87.366
https://link.aps.org/doi/10.1103/PhysRev.87.366
https://link.aps.org/doi/10.1103/PhysRevC.94.014612


BIBLIOGRAPHY

A. Sonzogni. Nudat 2.7. https://www.nndc.bnl.gov/, 2019.

Patrick Talou, R Vogt, J Randrup, Michael Rising, Jerome Verbeke, Madison Andrews, Shaun
Clarke, Patrick Jaffke, M Jandel, T Kawano, Matthew Marcath, K Meierbachtol, G Rusev,
A Sood, Ionel Stetcu, and C Walker. Correlated prompt fission data in transport simulations.
The European Physical Journal A, 54, 09 2017. doi: 10.1140/epja/i2018-12455-0.

D.D. Warner, M.A. Bentley, and P. Van Isacker. The role of isospin symmetry in collective nuclear
structure. Nature Physics, 2, 2006.

D. Wilmore and P.E. Hodgson. The calculation of neutron cross-sections from optical potentials.
Nuclear Physics, 55:673–694, 1964.

213

https://www.nndc.bnl.gov/


BIBLIOGRAPHY

214



Chapter 11

Variance Reduction for IMC Simulations of
Astrophysical Events

Team Members
Scott E. Campbell

Mentors
Mathew Cleveland, Kendra Long, and Ryan Wollaeger

Chapter Abstract

The Thermal Radiative Transfer (TRT) equations describe the coupling between thermal radiation
and material, which is an important physical process in many problems of interest to the astro-
physics community. The Implicit Monte Carlo (IMC) method, originally developed over 40 years
ago Fleck and Cummings (1971), is a standard solution methodology for the TRT equations. In
this research, an improvement for IMC techniques for analyzing the interactions between a super-
nova and its circumstellar material is discussed, tested, and analyzed for a simplified geometry.
This improvement uses a response function based variance reduction method to better estimate
the observed time-dependent signal from a supernova system. The response function method im-
proves the convergence, reliability, and accuracy of flux calculations for different tally surfaces in
IMC simulations. We were able to demonstrate said improvements by implementing this method
in the open-source branson IMC code developed by Alex Long (along@lanl.gov) using modern
object-oriented languages.

11.1 Introduction
Electromagnetic (EM) transients are the main observational probe of supernovae, providing insight
into the explosion energy, dynamics, and compositions of the exploding stars. These transients are
formed by the complex interaction of photons with matter expanding at high velocity, and with a
circumstellar medium (CSM) that existed before the supernova. Modeling supernovae with CSM
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interactions in multiple dimensions and extracting numerical transients is a challenging computa-
tional problem, requiring high spatial resolution in areas, relative to the overall distance between
the star and CSM van Marle et al. (2010); Moriya et al. (2013). For the radiative transfer, in 1D
deterministic Moriya et al. (2013) and Monte Carlo Kasen and Woosley (2009) have been applied
to synthesize light curves and spectra.

However, to our knowledge, for 2D and 3D only simplified treatments of the radiation have
been employed: parameterized radiative cooling van Marle et al. (2010); van Marle and Keppens
(2012), the M1 moment closure approximation Vlasis et al. (2016), or no treatment (only hydro-
dynamics) McDowell et al. (2018). Nevertheless, a spherical (or multidimensional) geometry can
significantly impact the properties of the EM transient (spectra, light curves) Vlasis et al. (2016);
McDowell et al. (2018), and the effect of higher-order radiative transfer on the observables may be
non-negligible.

Monte Carlo lends itself well to multiple dimensions since the sourcing of particles in space
can be adjusted to mitigate transport in low-energy regions to efficiently resolve regions of phase
space that are important to the observable quantities.

In a simulation of a multidimensional supernova interacting with a CSM, obtaining well-
sampled multi-frequency, multi-observer-angle spectra may generally be prohibitively expensive
with Monte Carlo, assuming escaping particles are directly tallied as part of the transient. For in-
stance, assuming a modest 1003 cell 3D simulation, 10 observational views, and 100 observational
wavelength bands, and further assuming 1% of particles from each cell are tallied as escaping flux,
the potential number of particles required to obtain 1 tally in each point in the observational phase
space would be ∼ 1003 × 10× 100× 100 = 1011 particles.

Given the expense of simulating this number of particles, variance reduction that takes into
account statistics at a tally surface (i.e. the “telescope”) is worth exploring. Variance reduction
methods are implemented to improve simulation efficiency while producing equivalent (unbiased)
results. Such methods include implicit capture, splitting, Russian Roulette, and weight windows,
which are described in more detail in Section 11.2.3.

The remainder of this report outlines the background, motivation, and theory for the method,
the algorithmic procedure, initial results, and an analysis of the cases and conditions where the
method is useful.

11.2 Background and Theory

11.2.1 Thermal Radiation Transport
The absorption of a photon emitted from a material is described by the TRT equations:

1

c

∂I

∂t
(~r, ~Ω, ν, t) + ~Ω

∂I

∂~r
(~r, ~Ω, ν, t) + σa(~r, ν, T )I(~r, ~Ω, ν, t) = 2πσa(~r, ν, T )B(ν, T ) +

Q

2
(~r, ν, t),

(11.1)

cv(~r, T )
∂T

∂t
(~r, t) =

∫ ∞
0

∫ 1

−1

σa(~r, ν
′, T )[I(~r, ~Ω′, ν ′, t)− 2πB(ν ′, T )]d~Ω′dν ′ (11.2)

where I is the specific intensity, T is the material temperature (keV), c is the speed of light, B
is the Planck function, Q is the inhomogeneous source, cv is the material ssspecific heat, and σa
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is the absorption opacity. Each of the terms in Eq. 11.1 corresponds to a loss or gain of photons
from some phase space of the radiation field. The first term describes how the time behavior of the
specific intensity depends on different gains and losses. The second is the streaming term, which
describes how photons are lost by spatial streaming out of the phase space. The third describes the
loss due to absorption into the material. On the right-hand side, the first is a gain term describing
the radiation source from material temperature, and the second term then describes an arbitrary
source of radiation. Equations 11.1 and 11.2 are non-linearly coupled with material temperature.

11.2.2 Implicit Monte Carlo
Monte Carlo methods are used to model time-dependent, nonlinear, radiative transfer problems in
complex three-dimensional configurations. This stochastic numerical method uses random sam-
pling to determine where and how a particle moves through a material. Some Monte Carlo meth-
ods minimize the effects of discretization errors through a continuous treatment of energy, space,
and/or angle leaving the primary errors to be rooted in stochastic uncertainties. However, Monte
Carlo methods typically come at the expense of long run times (with a standard convergence rate
∝ 1√

N
, where N is the number of histories simulated) and heavy use of machine resources.

The Implicit Monte Carlo (IMC) method is a specific variant of Monte Carlo originally devel-
oped by Fleck and Cummings in 1971 to solve the TRT equations Fleck and Cummings (1971).
IMC uses ‘effective scattering’ to model particle absorption/re-emission in a material for its current
time step. This is represented by the Fleck factor, f , described as follows:

f =
1

1 + 4acT 3σ∆t
cv

(11.3)

where a is the radiation constant, c is the speed of light, T is the material temperature, σ is the
material opacity, ∆t is the time step, and cv is the material’s specific heat.

The IMC method uses a semi-implicit time discretization of the emission term to linearize the
system of equations. By linearizing the TRT equations, IMC takes on a maximum principle sta-
bility limit, that if violated, can result in unphysical behavior. Additionally, the time discretization
is not fully implicit as implied, but rather semi-implicit as it is typically too expensive to converge
otherwise.

In the branson IMC code used for this research, the spatial domain is discretized into rectan-
gular regions referred to as cells, each with a constant material temperature, radiation temperature,
and density per timestep. Particles are tracked as they move through the cells and can be absorbed
into the material, scattered, or stream out of the spatial domain. A particle is transported until it
reaches the end of the time step or is fully absorbed by the material. Information about the system
(e.g. fluence) is accumulated during the timestep and stored in a ‘tally’.

11.2.3 Variance Reduction for IMC
Since the IMC method is stochastic, there will always be some statistical error in the result. Inher-
ent issues with IMC methods include slow convergence and large computational requirements Wol-
laber (2016). Furthermore, in cases where a material is optically thick and the distance from source
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to observation point (i.e. a tally surface) is large enough, the analog IMC method will fully absorb
most particles into the material before they reach the tally, leaving the tally poorly sampled.

Due to these issues, variance reduction methods for IMC are necessary to provide equivalent
answers while using fewer resources and converging faster. There are a large variety of variance
reduction methods suited to different purposes. Common examples include implicit capture cou-
pled with history termination, splitting and Russian Roulette, exponential transformation, forced
collisions, source biasing, correlated sampling, optical reciprocity, and weight windows Landman
(2016).

Implicit capture, or absorption suppression, is a classic variance reduction technique that ad-
justs a particle’s weight at every collision event according to the following relationship:

wn, i+1 = wn, i(1−
σa

σa + σs
)s (11.4)

where σa and σs are the absorption and scattering cross-sections, respectively. Implicit capture
allows particle histories to exist longer in the problem, increasing the likelihood that a particle
reaches a tally surface or other region of interest.

Continuous absorption is similar to implicit capture, in that both extend particle histories by
replacing analog absorption events with unbiased “weight-change” events. Continuous absorption
treats the particle energy-weight as a continuously-varying function of position. With the IMC
Fleck factor, the expression for continuous absorption along a path segment is given by

Eparticle, i+1 = Eparticle, ie
−σa·f ·devent , (11.5)

where devent is the distance to the next position the particle travels to. Continuous absorption is
enabled by default in the branson code.

Weight windows are another common variance reduction technique, in which each cell in the
problem mesh is given a weight window center bounded by higher and lower values Landman
(2016). Once a particle enters a new cell, if a particle’s weight is not within the weight window,
one of two processes will occur. If the particle’s weight is above the window, it will be split into
additional particles. Particles whose weight is below the window will undergo a technique such as
Russian Roulette Lewis and Lewis to remove the particle from the simulation.

All of the variance reduction methods listed above do not ensure that a tally surface will always
be well sampled. In cases where particles have short mean free paths (i.e. traveling through a
material with a high opacity), particles are still not guaranteed to pass through the tally surface.
To ensure a tally is well-sampled, ideally, all particles would contribute to the tally at least once
before being fully absorbed into the material. To this end, a response function, in theory, will meet
this requirement.

11.2.4 Next Event Estimators
Next event surface crossing estimators (NXTEVT) are an existing method for improving Monte
Carlo tally statistics in radiation transport problems. To date, NXTEVT estimators have primarily
been used in source-detector-type neutron transport problems. NXTEVT contributes to a tally
surface the expected value of a particle that will cross through the tally surface. This method is an
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effective tool to minimize variance in situations where particles have limited histories, and large
mean free paths in the problem material Dailey (2011); Lucy (1999, 2005).

Figure 11.1: A visual demonstrating why splitting is ineffective in optically thin regions: the split
particles will all have generally the same direction and will stream with few collisions.

NXTEVT estimators are implemented instead of splitting and Russian Roulette (e.g. weight
windows) to get a well-sampled tally in small geometric regions. Figure 11.1 demonstrates why
splitting is ineffective in problems of low opacity. This method is preferred in cases where a
limited number of particles reach an area of interest, i.e. tally. For example, this can result from
optically thin regions where few collisions occur, mitigating scattering which would statistically
direct more particles towards the tally region. In this case, particles will be transported further,
and consequently, will deposit more energy and be rouletted before they reach they can reach the
tally. Additionally, splitting and weight windows do not change a particle’s direction, furthering
the effects described earlier Booth et al. (2012).

This method points particles towards the region of interest to increase the sampling of important
angles. The tally surface is ’scored’ via the following equation: assuming that a particle is at a
position ~r, direction ~Ω, and weight w0 intersecting a tally with a surface area Stally at a position ~r′
from the particle, the scored flux, φ(µ), is given by

φ(µ) = w0
e−

∫ ~r′
~r Σt(s)ds

S · µ (11.6)

where µ is the angle between ~Ω and the surface normal at ~r′, and Σt is the total cross-section in the
material.

TRT has orders of magnitude more collisions and is typically solved on meshes rather than
common editorial geometry. This makes the NXTEVT estimator very expensive. Because of these
limitations, we chose to investigate a new method that addresses these issues.
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11.2.5 Response Function Theory

A response function can be an effective variance reduction method for tally surfaces because it
contributes an adjusted energy value to the tally at every scatter event, rather than adding a con-
tribution only once the particle passes through the tally surface. Because of this feature, the tally
surface should be well-sampled using the response function compared to standard variance reduc-
tion methods.

A response function estimates the probability that a particle ‘survives’ to the tally surface fol-
lowing its current trajectory. The expected tally weight of the particle is proportional to the optical
depth between the current particle position and the tally surface (in the direction of particle travel).

The response function is generated by tracing a number of particles through the problem do-
main starting uniformly on the tally surface, directed at a cosine-distribution angle. Since each cell
may have a unique σa, every possible path from the source to the tally surface will result in a poten-
tially unique contribution to the tally. The response function attempts to model this by averaging
the absorption opacity based on the accumulation of all weighted σa values from the previous cells
into an effective opacity, σr. At every scattering event, the contribution of the particle to the tally
is calculated by

Econtribution = Eparticlee
−(σr+ 1

c∆t
)dtally (11.7)

where Eparticle is the current energy of the particle, ∆t is the current time step, and dtally is the
distance of the particle to the tally surface along its path.

11.2.6 Supernova and CSM Parameters

We attempt to model a snapshot of a supernova interacting with a circumstellar medium (CSM).
The CSM has high enough mass to theoretically produce a superluminous supernova (e.g. SN
2006gy). The time for the snapshot is chosen to be after the supernova ejecta hits the CSM and
produces a shock. This shock ionizes the CSM, which increases the opacity and consequently the
optical depth. Moreover, the increase in density from the shock, coincident with the ionized region,
also contributes to an increase in the optical depth of the CSM.

The approximate properties of each layer near the time of peak luminosity (∼ 70 days) for
model D2 of Moriya et al. (2013) are as follows in Table 11.1.

Supernova Ejecta Ejecta-CSM Shock CSM (pre-shock)

Rs,min = 0 cm Rs,min = 1015.829 cm Rs,min = 1015.831 cm
Rs,max = 1015.829 cm Rs,max = 1015.831 cm Rs,max = 1016 cm
ρej = 10−14 g/cm3 ρs = 10−12 g/cm3 ρCSM = 10−14 g/cm3

Tej = 104 K Ts = 106 K Ts = 104 K
cv = 106 erg/K/g cv = 106 erg/K/g cv = 106 erg/K/g
κej = 0.3 cm2/g κs = 0.3 cm2/g κCSM = 10−4 cm2/g

Table 11.1
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For spherical symmetry, these values give masses of about 6, 8.5, and 14 for the interior ejecta,
shocked ejecta-CSM, and CSM, respectively, which are on the order of the model values presented
by M13. The optical depth through the internal ejecta is about 20, and is about 10 through the
shocked ejecta-CSM layer. The preshock CSM is evidently hot enough to be ionized, hence it can
contribute another 10 mean-free-paths of optical depth. The spatial width of the shock layer is only
0.46 % of the radius of the shock, despite providing 1/3 of the total optical depth.

11.2.7 Rescaling Parameters
We adjust dimensions and scale certain parameters to simplify the setup of the supernova input.
This can also be of use when attempting to test different types of supernovae conditions while
preserving relevant physical properties or numerical resolution.

An adjustment of the overall domain size (radius),

R

R0

≈ 10−16 , (11.8)

where values subscripted with 0 are unscaled, gives dimensions of O(1 cm). Relevant properties to
preserve are the optical depth, light crossing time, and ratio of total time to the absorption-emission
timescale. To preserve the light crossing time, we simply scale the total simulation time,

t =
R

R0

t0 , (11.9)

Similarly, assuming opacity is constant or piecewise-constant, the optical depth is preserved when

κ = κ0
R0

R
, (11.10)

where density has canceled from the left and right side. To preserve the ratio of the absorption-
emission time scale to the total time, t,

tae =
cv

4κacT 4
=

R

R0

tae,0 =
R

R0

cv,0
4κ0acT 4

, (11.11)

which implies
cv = cv,0 . (11.12)

Density and temperature have been left unchanged. The important aspect of this problem is
the geometric structure and optical depth. To lower the spatial resolution requirements, the ejecta-
CSM shock layer may be spread from 0.4% to ∼10% of the problem length while preserving
optical depth. To do so, the density of the layer can be lowered to compensate for the increased
size of the layer.

11.3 Method and Technical Approach
The implementation of the response function variance reduction method largely follows a standard
Monte Carlo approach, with the addition of an inverse transport solve to generate the response
function before running the forward transport problem.
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11.3.1 Problem Initialization
At the start of the problem, several parameters are defined based on the properties of the materials
in the problem domain. The absorption opacity, σa, is calculated using the Fleck factor:

σa = fσ. (11.13)

The source emission, Se for each cell is defined as

Se = c · a ·∆t · σa · T 4, (11.14)

and total source emission, Se, total, is the sum of Se for each cell;

Se, total =

ncell∑
i=1

Se, n. (11.15)

The normalized weight, wideal, of each particle in the simulation is the quotient of Se, total and
Nparticles. The number of particles to be emitted in each cell is then the quotient of Se and wideal.
A check is run to ensure that each cell emits at least one particle. The time of emission for each
particle is determined from a uniform distribution over the time step:

t0, particle = ξ∆t (11.16)

where ξ ∈ [0, 1] is a uniformly distributed random number. The temperature of each cell is calcu-
lated by

Tcell = ρcv∆t∆E (11.17)

where ρ is the material density and ∆E is the difference between Se and the absorbed energy in
each cell.

11.3.2 Inverse Transport
At the beginning of each time step, the response function is generated for the mesh. Our approach
discretizes the function over the domain space, using each cell as a region to calculate the response
opacity, σr. To calculate σr for each cell, a set number of particles (Nresponse) are traced over the
mesh to accumulate information.

The first step is to initialize each particle. Each particle’s starting position is initialized uni-
formly on the tally surface using the following equations:

φ = 2πξ, (11.18)

µ = 1− 2ζ, (11.19)

θ = arccosµ (11.20)

where ξ, ζ are uniformly-distributed random numbers, ξ, ζ ∈ [0, 1]. The position vector, ~r, is then
given by

~r =

r0

r1

r2

 =

xtally +Rtally

√
1− µ2 cosφ

ytally +Rtally

√
1− µ2 sinφ

ztally +Rtallyµ

 (11.21)
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where the tally is centered at (xtally, ytally, ztally) with a radius of Rtally.
Additionally, the direction of the particle is initialized towards the source via a cosine-distributed

angle. First, the inward unit normal from the point to the source N is given by:

N =

x̂ŷ
ẑ

 =
1

nr

xtally − r0

ytally − r1

ztally − r2

 (11.22)

where 1
nr

is the unit vector fraction, [(xtally − r0)2 + (ytally − r1)2 + (ztally − r2)2]
1
2 . Then an angle

factor, fangle, is calculated by:
fangle =

√
|1− ẑ2|. (11.23)

Lastly, the angle ~Ω is:

~Ω =

Ω̂x

Ω̂y

Ω̂z

 =
1

nΩ

x̂ cos θ + ẑx̂ sin θ cosφfangle − ŷ sin θ sinφfangle
ŷ cos θ + ẑŷ sin θ cosφfangle + x̂ sin θ sinφfangle

ẑ cos θ − fangle sin θ cosφ

 . (11.24)

where φ is from Eq. 11.18, cos θ is from Eq. 11.20, and 1
nΩ

is the vector unit fraction, similar to
above.

Figure 11.2: A simplified visualization of the response function method. Particles are traced from
the surface of the tally (blue ring) ‘towards’ the source (purple square) until they exit the mesh.
As the particle moves, an adjusted opacity, σr, is calculated based on how far the particle has
traveled from its origin on the tally surface, as well as the σa, cell values of the cells that it has
passed through. A darker shade of red corresponds to a higher σr value – a less likely chance that a
particle will ‘make it’ to the tally. These values are then used to calculate an effective contribution
to the tally based on the cell the particle being transported is in.
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With the particle initialized, it is then traced through the mesh. Scattering and absorption events
are not simulated. Instead, the following information is recorded as the particle passes a distance
dcell through each cell:

1. The total distance the particle has traveled through each cell, dtotal, particle =
∑
dcell.

2. The sum of the distance the particle travels through each cell multiplied by the cells absorp-
tion opacity, σdtotal, particle =

∑
dcellσa, cell.

3. The total distance, dtotal, cell =
∑
dn, cell for every particle n that passes through each cell.

4. The total distance multiplied by the absorption opacity, σdtotal, cell =
σdtotal, particle

dtotal, particle
dcell for

every particle that passes through each cell.

where σa, cell is the absorption opacity of the cell the particle is in. The average response value for
each cell can then calculated using the following equation:

σr =
σdtotal, cell
dtotal, cell

. (11.25)

Figure 11.2 is a visual representation of this process.
An additional angular dependency was added to the response function method and imple-

mented for this particular problem. The response function was separated into six directions for
each cell: x-positive, x-negative, y-positive, y-negative, z-positive, and z-negative. This is thought
to have an appreciable impact on the calculated flux as the averaged σr can be unrepresentative of
the true contribution based on particle directionality. For example, particles in cells close to our
spherical tally will travel a distance closest to the tally, or to the other side of the tally: a potentially
significant distance.

For the angular dependent calculation of σr, a similar process as above is followed, however,
each directionality is accounted for:

~dtotal, cell =
∑


dx(−)

dx(+)

dy(−)

dy(+)

dz(−)

dz(+)

 =
∑



max(−Ω̂x ∗ devent, 0.0)

max(Ω̂x ∗ devent, 0.0)

max(−Ω̂y ∗ devent, 0.0)

max(Ω̂y ∗ devent, 0.0)

max(−Ω̂z ∗ devent, 0.0)

max(Ω̂z ∗ devent, 0.0)


(11.26)

where ~Ω is the current direction of the traced particle.

~σdtotal, cell =
∑

σavg, photon · ~dtotal, cell (11.27)

where σavg,photon is the average opacity encountered by a photon:

σavg, photon =
σdtotal, particle
dtotal, particle

. (11.28)
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The response function value for each cell is then calculated the same as above, but retaining the
directionality:

~σr =
~σdtotal, cell
~dtotal, cell

. (11.29)

The response value for a photon traveling in a direction ~Ω, is then calculated by:

σr = ~Ω · ~σr. (11.30)

11.3.3 Forward Transport
The forward transport problem closely resembles a typical IMC scheme. Each particle is sourced
in a cell and is transported over the duration of the timestep. Upon creation, a contribution is added
to the tally using Eq. 11.7.

For each particle, while it remains in the problem domain and the timestep, a distance to the
next scattering event is calculated:

dscatter = − log
ξ

(1− f)(σa + σs)
(11.31)

where ξ ∈ [0, 1] is a uniformly distributed random number. Additionally, the distance to the cell
boundary, dboundary, distance to the tally surface, dtally, and the distance to reach the end of the
timestep, dcensus are calculated. It should be noted that we are interested only in escaping flux,
so dtally is the distance to the surface of the tally where the particle would exit through. If the
particle will not pass through the tally based on its current direction, dtally is set to be ≈ ∞ to
machine limits, such that the contribution from Eq. 11.7 approaches 0. The distance to the end of
the timestep, dcensus, is also determined. The distance to the next ‘event’ is then calculated by:

devent = min(dscatter, dboundary, dcensus) (11.32)

as the smallest distance is the most likely event to occur first. The particle is then moved a distance
devent and its weight reduced accd. to Eq. 11.5.

At this point, if the weight of the particleis below a set fraction, then it is determined to have
an inconsequential effect on the simulation and is no longer tracked. If the event was determined
to be a scatter (devent ≡ dscatter), then a new direction is sampled from a cosine-distribution and a
contribution is added to the tally using Eq. 11.7. Because a limited number of particles are traced
in the inverse problem, it is possible that some cells will not have a σr value. If this is the case,
then more particles are traced trough the inverse problem. This is repeated as long as the cell has
no contributions.

If instead, the selected event was a cell boundary crossing (devent ≡ dboundary), then the parti-
cle’s current cell information is updated to the new cell. Lastly, if the event is the particle reaching
the end of the timestep (devent = dcensus), then the particle is put into a list of all particles that
‘survived’ the timestep to resume transport in the next timestep.

To maintain an unbiased simulation, at the end of the timestep after all particles have been
transported, the total initial energy of all the census particles are redistributed randomly to a smaller
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number of representative particles. This allows for additional particles to be transported within
each timestep. Additionally, the temperature T of each cell is updated accd. to Eq. 11.17. The
timestep information is then updated and the above scheme is repeated for the entirety of the
simulation.

11.4 Test Problem
To check the validity of the response function method, a steady state homogenous point source
problem with a fixed opacity was devised where the analytic flux solution could be estimated. This
problem consisted of a 0.1× 0.1× 0.1 cm3 ‘source’ cube, encased in a 1.0× 1.0× 1.0 cm3 cube.
The entire problem was then surrounded by a vacuum to mitigate all escaping flux from returning
to the problem domain. In order to calculate the response function, 10, 000 particles were traced
through the mesh to generate the σr values for each cell. A spherical tally surface was centered at
the origin of the heated cell with a radius of 1.0 cm.

The validity of our method was tested using measures of average flux and variance as well
as the figure of merit (FoM) of the method. These quantities were measured as a function of the
number of particles run in the forward simulation.

Figure 11.3: A graph showing values of the average flux and variance for a point source problem
as a function of the number of forward particles simulated. This shows that the response method
has far less variance for fewer simulated particles, which implies that it is a more efficient method
under these conditions.

Results of the average flux and variance testing are shown in Fig. 11.3. The analytic flux for a
point source problem is determined using the following equation:

Flux =
Q exp{−σa}

Atally
(11.33)
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where Q is the total source weight, σa is the absorption opacity, and Atally is the surface area of the
tally. Because the point-source problem is effectively steady-state, average flux and variance were
determined from the average over all of the time steps in the simulation. The general trend of this
plot demonstrates that the response function produced values largely centered around the analytic
flux with significantly lower variance. It should be noted, however, that the second data-point is
anomalous: likely resulting from statistics or a minor bug in the code.

Figure 11.4: A graph showing the figure of merits (FoM) of the regular tally method as well as the
response function. A higher FoM corresponds to a method that provides less variance in a more
efficient period of time. This figure shows that after approx. 50k particles, our method results in a
greatly improved FoM compared to a regular tally. This provides a strong basis for the usefulness
of our method.

The FoM for the response function is compared to the standard tally method in Fig. 11.4.
The FoM for the different methods is determined by the following equation outlined in Lewis and
Miller 1993 Lewis and Lewis:

FoM =
1

σ2(x) · trun
(11.34)

where σ2(x) is the variance of the method and trun is the time to run the simulation. A higher
FoM for a method indicates a method that produces an answer more efficiently between variance
and run time. As in Fig. 11.3, this plot also illustrates an improvement of the response function
over the standard tally: the FoM of the response function is equivalent to or better than that of the
standard tally. At around ≈ 50k particles run through the simulation, the FoM of the response
function method consistently exceeds that of the standard tally method by more than a factor of 2.

The results of these two measures provide a strong basis for the validity and usefulness of the
response function tally for our simplified point-source problem. Additionally, the integration of
the response function theory into the computational method is validated further by Fig. 11.5. Our
response function method has a far greater number of contributions (≈ 40% greater for the given
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Figure 11.5: A graph showing the number of particles (or times in the case of the response function)
that contribute to the tally. In general, a method will be expected to have a smaller variance with a
greater number of particles that contribute to the tally.

input variables), matching the intended design for the problem types at hand. Considering the
impact of these results gives us a strong foundation to test more complex problems.

11.5 Results & Supernova Applications
This section presents the results of the response function method applied to a simplified supernova
problem. The geometry of the supernova is represented as cubic shells for the ease of the generation
of an input file. This problem is further referred to as the ’cubanova’ problem. This geometry can
be seen on the left-hand side of Fig. 11.8. The innermost shell (yellow) is the supernova eject, the
next out is the Ejecta-CSM Shock (red), followed by the CSM (pre-shock) (green) from Table 11.1
surrounded by void (blue). The simulation results were compared against standard tally methods
as a point of reference.

11.5.1 Cubanova with Spherical Tally
For these simulations, a spherical tally surface was centered in the problem domain, (0, 0, 0), with
a radius of 2. The simulations where run at a coarse particle/time-step resolution which results in a
significant amount of noise in the radiation and temperature field as shown in Figs. 11.6 and 11.7.
This plot demonstrates why the response function tally is possibly more efficient than the regular
tally for this type of problem: it shows how poorly resolved the radiation solution is outside of the
innermost material region.

Figure 11.8 shows a comparison between the true σa of the problem at time t0 (left-hand side)
as well as the generated response values, σr, (right-hand side) for each cell. The response value
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Figure 11.6: A plot of the electron temperature at the end of the simulations shown in Figs. 11.8,
11.9, 11.10.

Figure 11.7: A plot of the radiation temperature for the simulation in Fig. 11.6.

for each cell represents the average opacity between the cell and every possible tally location.
From a visual standpoint, the response values match expectations. The smearing artifacts along

the axis in the response values show a limitation of the direction-independent σr calculation. This,
in general, leads to an under-estimation of the flux in the forward transport problem. This can be
slightly alleviated through a directional-dependent σr calculation.

Since the flux of the cubanova problem has detailed space- and time-dependence (i.e. there is
no analytic flux solution to compare to) the average and variance of each method was calculated for
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Figure 11.8: A plot of the geometrically simplified supernova problem showing the true σa value
of the problem (left-hand side) as well as the σr values generated by the response function method
(right-hand side).

Figure 11.9: A graph demonstrating the variance of the regular tally, and response function tally,
and an angle-dependent response tally for the simplified supernova simulation from Fig. 11.8 as a
function of the simulation time.

each time step from a number of independent simulations each with a unique random seed. Figure
11.9 shows the results from twenty independent simulations for the standard tally and response
tally methods. The general trends indicate that the response function method has a significantly
lower variance at any given time step where the flux is statistically meaningful (see Fig. 11.10). It
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should also be noted that the variance of the response method is relatively stable compared to that
of the regular tally, implying that the response method will be stable and predictable throughout
the simulation relative to standard methods.

Figure 11.10: The relative flux calculations made by the regular tally method and the response
function tally method. As in Fig. 11.3, the response method has a smaller variance, however, it
also drastically underestimates the flux. This likely stems from the use of a spherical tally surface
instead of a directional tally surface for this particular problem.

Figure 11.10 illustrates the average flux and standard deviation from the simulations run in Fig.
11.9. It is important to note that the response function produces an average flux significantly lower
than the standard tally method which is thought to closely approximate the true flux. However,
the angle-dependent method does approximate the solution more closely. We believe that this
discrepancy is not in the fault of the method, but rather an artifact of the use of a spherical tally on
which the response function is generated. Under this, we would expect that a planar tally surface
will produce a flux that accurately represents the true value as it has its directionality built-in.
Section 11.5.2 discusses this and results of using a planar tally.

11.5.2 Cubanova with Planar Tally
A planar tally is investigated for use in the cubanova simulation as its inherent directionality, in
theory, should generate a flux via the response function method that aligns more consistently with
the regular tally method. For these simulations, a Y Z plane centered at X = 2 was used. Addi-
tionally, the plane was bounded by the problem region, as otherwise, the response function method
would contribute to the tally for particles outside the problem domain.

Due to the directionality of a plane, a slightly modified forward transport method was used:
instead of increasing the number of particles in the inverse problem, a photon is simply ‘marked
for response.’ Then, a particle contributes to the tally at its birth, every subsequent scattering event,

231



CHAPTER 11. VARIANCE REDUCTION FOR IMC SIMULATIONS OF ASTROPHYSICAL
EVENTS

and also if the photon is ‘marked for response.’ After contribution, a particle is no longer ‘marked
for response.’ This method was implemented as particles are only traced in one general direction.
Small corner cells would then require a significantly longer time to get a contribution, making it
computationally inefficient.

Figure 11.11: A plot of the response function values for the cubanova simulation using a Y Z
planar tally centered at X = 2.

The response function values using the planar tally are shown in Fig. 11.11. From a visual
standpoint, the plot appears as we would expect: smearing in the negative x-direction results from
the directionality of the transported particles.

The motivation for using a planar tally is in approximating the problem flux with a lower
variance than a regular tally method. Figure 11.12 shows that the variance of the planar tally
method is significantly lower than that of the regular tally (43.9%). Additionally, Fig. 11.13 shows
the planar tally flux approximation is statistically equivalent (< 1% difference on average) to that of
the approximate analytic solution obtained by the regular tally with a significantly greater number
of forward particles.

It should also be noted that the planar tally receives approximately four orders of magnitude
more particles than the regular tally. For these problems with higher opacities, a more complex
problem geometry, and/or limited particle histories, the planar tally becomes of more use.

These expectations are further validated by Fig. 11.14 which shows the relative errors of the
average flux calculations for planar and spherical response function geometries to the regular tally.
The general trend clearly indicates that for the cubanova problem, the planar tally consistently
produces values closer to the approximate analytic (regular tally method with a significantly greater
number of forward particles) than the spherical tally method produces. This also indicates a strong
connection between problem and tally geometry with the variance and accuracy of the results
obtained.
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Figure 11.12: A graph showing the relative variance of the regular and response function methods
using a planar tally along the Y Z axis at the edge of the positive x-axis.

Figure 11.13: A graph showing the calculated flux of the planar response function compared to the
standard tally method with the standard deviation of the flux values shown.

11.6 Conclusions and Future Work

Our investigation into the use of a response function-based variance reduction method for use in
simulations modeling supernova interactions with its circumstellar medium has shown a notable
improvement in variance over standard methods in simple cases.

The lack of directionality in the response function likely causes the method to under-predict the

233



BIBLIOGRAPHY

Figure 11.14: A graph comparing the relative errors of the spherical- and planar-geometry response
function tallies for the cubanova simulation.

flux for a spherical tally. The planar tally implementation did demonstrate a closer approximation
to the regular tally method, albeit with no improvement of the variance. We do expect that the
method will perform better for tally geometries that reflect the geometry of the problem.

Future work will include looking at improving the directionality of the response function for
different problem and tally geometries. It would be very useful to perform a response mesh res-
olution study in angle and energy to determine when the response tally result “converges” to the
regular tally. Optimization of the response function generation method could also be performed.
Additionally, running our response function with a more realistic supernova-CSM simulation to
determine if our method converges accordingly is of interest as well.

Scott E. Campbell is a rising junior at Gonzaga University in Spokane, Washington, with a
double major in Physics and Math-Computer Science.
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Chapter Abstract

Machine learning techniques are used to analyze and model several aspects of ejecta physics in
tin targets. We used high resolution FLAG simulations as training data for the machine learning
techniques, which can then be compared to experimental results. The k-means algorithm is used to
explore different classes of double shock ejecta while deep neural networks are used to model sev-
eral aspects of single shock tin targets from simulation input parameters. The three deep learning
models that were created are able to predict if ejecta will form, the evolution of kh, and the mass
ejected from the target.

The main goal of this project was to show the applicability of Machine Learning. Each of
the projects are individually interesting and potentially useful, even though they can be polished
further, but more interestingly, the combination of all of them shows that ejecta physics is a prime
area for applying machine learning.

12.1 Introduction

12.1.1 Shock Physics
A material hit suddenly with a velocity faster than its local speed of sound experiences a shock.
The material then experiences a discontinuity of its internal state in the shock direction (Bourne,
2013). Any perturbations in the free surface of the material will be affected by the shock as it
hits them. The shock front first hits the lowest points on the free surface, pushing them outwards.
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This begins a process of inverting perturbations in the surface, creating spikes. If the shock is
strong enough the inversion can continue until the spikes begin to break up. The material that has
a velocity higher than that of the free surface is called ejecta. After hitting the surface, the shock
reflects back through the material. The ejecta produced is affected by the shock velocity and the
surface perturbations wavelength, amplitude, and shape.

The particle velocity is always less than the shock velocity. The relationship between the shock
velocity and the particle velocity is defined as:

Us = c0 + Sup (12.1)

where Us is the shock velocity and up is the particle velocity. And c0 and S are constants that
are generally determined through experiments and specific to the type of material (Bourne, 2013).
For the tin we are using the c0 is 2.59 and S is 1.49 (Marsh, 1980). The longitudinal speed of
sound in tin is 3.43 km/s (Marsh, 1980). The density of the tin material in our simulations is
7.29 g/cm3. The equation of state used was the Sesame 2160 and the strength model used was
Preston-Tonks-Wallace (PTW) model.

kh =
4πA

λ
(12.2)

where A is the amplitude, λ is the wavelength, k is the wavenumber(2π
λ

), and h is two times the
amplitude.

Figure 12.1: Shock Diagram
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12.1.2 FLAG Simulations
Unsupervised data set

We were given 146 double shock simulations from FLAG 3.7.1 with varying parameters as seen
in figure 12.2. The surface of all the simulations are two period sine wave perturbations. These
simulations ran for 10 µs and were done in a two dimensional Cartesian geometry.

Double Shock Simulations’ Parameter Ranges
Parameter Minimum Value Maximum Value Sampling Distribution
kh 0.3 4.0
Amplitude (cm) 0.0005 0.002 Uniform
Wavelength (cm) 0.005 0.02 Uniform
Velocity 1 (cm/µsec) 0.02 0.15 Uniform
Velocity Release Slope
1 (cm/µsec2)

0.0 0.01 Uniform

Velocity 2 (cm/µsec) 0.022 0.24
Velocity Release Slope
2 (cm/µsec2)

0.0 0.01 Uniform

Time between Shocks
(µsec)

0.5 3.5 Uniform

Table 12.1: The velocity name used refers to the particle velocity of the simulation. Velocity 2
value was created by generating a number through a uniform distribution from 0 to 0.1 and adding
it to the velocity 1 value. This is why its minimum value is close to the velocity 1 minimum value
and the same is true for both of their maximum values. This insures that velocity 2 is always
greater or equal to velocity 1.

Figure 12.2: Distribution of Parameters. The parameter dv1 corresponds to Velocity Release Slope
1 and dv2 to Velocity Release Slope 2. Time refers to the Time between Shocks.
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Supervised data set

We ran 1300 single shock simulations in FLAG 3.7.1 with varying particle velocities, amplitudes,
widths, surface shapes. There were 650 sine surface simulations and 650 triangle surface simula-
tions.

We attempted to make the kh values a uniform log distribution, but due to our sampling ampli-
tude and width from a uniform distribution, the kh values were not evenly spaced in log space. If
the amplitude was log uniformly sampled, the kh values would have been more evenly spaced in
log space. Figure 12.3 shows the distribution of the parameters over their respective ranges. The
simulations ran for 1.5 µs and were done in a two dimensional Cartesian geometry.

Single Shock Simulations’ Parameter Ranges
Parameter Minimum Value Maximum Value Suggested Sampling Distri-

bution
kh 0.1 10 Log Uniform
Amplitude (cm) 0.00005 0.02 Log Uniform
Wavelength (cm) 0.005 0.06 Uniform
Velocity (cm/µsec) 0.02 0.15 Uniform

Table 12.2: The ranges of the parameters which are some of the inputs into the simulation. The
ranges for amplitude and wavelength limit the range of kh. The velocity refers to the particle
velocity of the simulation.

Figure 12.3: Distribution of Parameters. The kh and amplitude are plotted in log space and are not
uniformly sampled in that space.

We used Ensight to process the files, getting the information for the density, volume, pres-
sure, temperature, and energy at each of the nodes of the simulation. The mass was obtained by

240



12.2. UNSUPERVISED MACHINE LEARNING

multiplying the density by the volume. This gives files of the simulation at each time step, approx-
imately 300 files per simulation. These are the data files we use later to process further and use as
data for our supervised learning models.

12.1.3 Machine Learning

Shock physics has many complexities and even though these are difficult to understand analytically
it may be possible to model these aspects of ejecta physics using machine learning techniques. Cur-
rently high resolution simulations or models of ejecta production are used when simulating ejecta
production. There are known inaccuracies with current models of ejecta production which we be-
lieve can be accurately modeled with machine learning techniques. We have several examples of
emulators we have crated which predict various aspects of shock and ejecta physics using only the
starting conditions of the simulation.

12.2 Unsupervised Machine Learning

Our first machine learning project was unsupervised. Our goal was to extract ejecta from the FLAG
simulations of double shocked tin targets we were given and group them into classes based on their
characteristics, like mass, size, temperature, ect. We hoped to find that the ejecta fit into classes
that we would put them into ourselves, such as first shock and second shock ejecta, but since this
is an unsupervised project the classes created by the k-means algorithm will not necessarily fit our
expectations.

12.2.1 Getting Ejecta from FLAG Simulations

The data extracted from the FLAG simulations was in the form of node points and the quantities the
simulation tracked for them, with one file per timestep. In order to extract the relevant quantities for
our k-means analysis we first needed to group these points together and determine if each group
was part of the ejecta or the bulk material. To do this we used an algorithm named DBSCAN
provided in the python library sklearn. This algorithm groups points together by how close they
are to one another and will only add a new point to an existing group if it is farther from every point
in the group than a given threshold distance. This algorithm allowed us to determine which node
points belonged to individual ejecta or to part of the bulk material after we tuned the threshold
distance properly. The proper threshold distance is related to the set up of the mesh for the FLAG
simulation.

The DBSCAN algorithm is not fast, so in order to reduce our running time we created a function
which determined where in the shock direction the largest drops in density of node points existed.
This point should be near the surface. Since in this project we were only concerned with ejecta,
we removed the points below the surface from our data before using the DBSCAN algorithm,
since they would be part of the bulk material. In addition to this, to avoid adding parts of the bulk
material into the ejecta classification, any groups of points resulting from the DBSCAN algorithm
which were within the threshold distance of the surface were also removed. This is more of an
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Figure 12.4: Shown is one timestep of a single double shock tin target simulation. The width of the
target is twice the wavelength, resulting in two spike tips after the first shock. This figure illustrates
our processing codes ability to separate individual ejecta given the node points that compose them
using the DBSCAN algorithm. Many colors were used for different groups of nodes returned by
DBSCAN. The black spots are the centroids of each ejecta particle found.

issue in the initial timesteps where the surface hasn’t yet inverted. Extracted ejecta are written out
to a text file by timestep so that we do not have to repeat the calculation.

One issue that we ran into with the ejecta extraction was that as ejecta propagated farther down
the simulation, the node points in those ejecta would sometimes begin separating, possibly due to
the decreased resolution farther down the simulation. This lead all of the ejecta from the first shock
eventually separating into two smaller ejecta according to our extraction method. We believe this
is unphysical.

We also believe that the ejecta extraction part of the unsupervised project is the area which has
the largest potential for improvement.

12.2.2 Getting Features from Ejecta

After determining which nodes correspond to each ejecta we needed to construct standard feature
vectors that could be fed into the k-means algorithm consisting of characteristics relevant to ejecta.
Some of the features we found were the total mass of each ejecta, the length and width of each
ejecta, the ejecta velocities, and the temperature averaged over the mass of each node. Many other
features could be calculated for the ejecta, but more complex sets of features result in more difficult
classes of ejecta to interpret. After creating the feature vectors we write them to a text file for each
simulation.
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12.2.3 Principal Component Analysis
In order to improve the run time of the k-means algorithm it is useful to remove redundant features
or relations between features. This can be done easily with the Principal Component Analysis
(PCA) algorithm. The first step in this process is feature scaling. This is done by first finding the
mean and standard deviation of each feature and then removing these values from the features so
that the mean of each features is zero and the standard deviation for each feature is one.

We used the PCA algorithm implemented in the python library sklearn.

12.2.4 K-Means

Figure 12.5: Simple example of ejecta after being classified by the k-means algorithm. Ejecta
are colored by classification and grey is the bulk material which is ignored. Using k=2 and only
including size and mass in our feature vectors for each ejecta we obtain an easily interpretable
classification with only a large class and a small class for ejecta.

The k-means algorithm works by first randomly selecting k center points in the feature space.
The next step is to determine the closest center to each feature vector. The center points are then
updated to be the centroid of all of the feature vectors which were closest to them. The process
then iterates by determining the feature vectors closest to the new center points. This is repeated
until convergence.

A standard issue that arises when using k-means algorithms is determining the proper value of
k to use. We used three methods for this purpose: the elbow method, the silhouette method, and
the gap statistic method. Each of these methods run the k-means algorithm at various values of
k. The results of these methods will depend on which features are used for the k-means analysis.
When we used these methods they did not result in definitive answers for the best value of k and
did not agree with one another. This implies that we did not have well separated classes of ejecta,
likely due to errors in our ejecta extraction method.

Another important aspect of unsupervised learning is interpreting what the classes represent
physically. This becomes more difficult as more features are used. Figure 12.5 shows a single
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timestep where the ejecta are colored by what class they are grouped into using only two classes
and only using size and mass of ejecta as features for the k-means algorithm. This example cre-
ates easily interpretable classes, large ejecta and small ejecta. We created similar plots using more
classes and more features, but interpreting the meaning of the classes was convoluted by compli-
cations in our ejecta extraction. A full understanding of the classifications given by k-means with
more features may lead to a deeper understanding of ejecta physics.

12.3 Supervised Machine Learning

We created three different deep neural network (NN) emulators to model/predict different aspects
of single shock tin targets. For all of our of these projects we used the python package Keras to
create, train, and test the NN. This allowed us to rapidly try different NN architectures to find
which worked the best for each emulator. Each model was fit to high resolution FLAG simulations
of single shocked tin targets. These simulations did not use any ejecta models from FLAG as the
project was partially motivated by an attempt to capture aspects of ejecta physics which is not
captured by the FLAG ejecta models.

Before passing our input to our NN models we made sure to properly scale all of our features
by subtracting the mean and removing the standard deviation of each feature.

12.3.1 Emulator 1: Prediction of if Ejecta is Produced

Processing

Our simplest supervised learning project was to use a NN to predict if a simulation would produce
ejecta after a single shock based on its starting parameters (particle velocity, width, amplitude,
surface type), mostly velocity and kh value. In order to do this we needed to determine and label
if each of our single shock simulations has ejecta or not.

We did this analysis in much the same way we extracted ejecta in the unsupervised project. We
used the DBSCAN algorithm on the final timestep in the simulation. If we found there were small
groups of points above the bulk then we labeled that simulation as having ejecta.

Results

For this classification problem, we were able to achieve a precision of about 98% and a Recall of
about 98% on our test set of 220 simulations. Including more simulations near the boundary, as
well as including more data at low kh values, would improve the model.

Interestingly, it can be seen from figure 12.6 that the slope of the boundary between ejecta and
no ejecta changes dramatically near a particle velocity of 0.08 cm/µs. We believe this corresponds
to the whole surface of the target melting. The points before that velocity that do eject material are
due to local melting. Our model seems to capture this change well.
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Figure 12.6: Plot shows training and test data as scatter points of circles and squares respectively.
Blue scatter points are simulations which were found to have ejecta during procession and red scat-
ter points did not have ejecta. The background color approximately shows our models prediction
of having ejecta (blue) or not (red) given initial kh and particle velocity. This is not exact because
the model actually makes its prediction based on the initial k and h independently instead of their
product. We also include a few example images of late times in five different simulations. The
approximate locations in particle velocity and kh space are marked in the plot by white numbers
corresponding to the green number in the top right of each example image.

12.3.2 Emulator 2: kh Evolution

Processing

Another of our supervised learning projects was to predict the evolution of kh after a single shock
hit the surface of the target. Like all of our supervised projects we used a NN to model the relevant
quantity, however, in contrast to the previous classification model we instead used a regression
model for the kh. In addition to the simulation inputs we also passed in the time for which the
particular value of kh was measured. After finding the k and h values they are written to a text file
by simulation.

Since our NN has no concept of memory our split between training and test data was not just
split between simulations, one data point is a single timestep with this method. The test set was a
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(a) 1 PDV (b) 2 PDV (c) 3 PDV

(d) 4 PDV (e) 5 PDV

Figure 12.7: Simulated Photon Doppler Velocimetry (PDV) plots of the ejecta types seen in figure
12.6 whose numbers are the same as the numbers used here. The spike in velocity shows the time
the shock hits the surface. The cases where there is low deviation in the velocity are the cases of
no ejecta produced. The surface velocity is determined by the particle velocity of the simulation,
so cases 3 and 5 have about the same surface velocity and similarly for cases 1 and 2.

random selection of timesteps from the simulations.
One alternative to this would be to have the model output be an array of values interpreted to

be the kh value at particular points in time after the beginning of the simulation. In this method
a single data point would be an entire simulation. The downside to this method comes when
using simulations with variable timesteps. In order to use this method with variable timesteps the
measured kh values would need to be interpolated to the desired output times.

Results

The model was fit to the height value (h) instead of kh since k is constant for a single simulation.
In addition to this, one of the largest improvements we saw was to fit to the log of the height. This
brought the model from not being able to fit the no ejecta cases to fitting them very well.

From figure 12.9 it can be seen that our model was able to do a good job fitting the kh evolution.
The largest error occurs on the boundary between ejecta production and no ejecta production in
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kh vs. particle velocity space. Adding more simulations to the training set along this boundary is
likely to improve the model further. One interesting observation about our model that can be seen
in figure 12.8 is that the model seems to be fitting the time that the shock hits the surface, which is
the first drop in kh in the data. If this is true it would imply the model is able to approximate the
relation between particle velocity and shock velocity.

This model is useful because when a second shock reaches the surface the value of kh at that
point in time has a large effect on how much ejecta is produced. The FLAG ejecta source model
has attempted to take this into account by assuming that when a second shock reaches the surface
the entire spike tip has broken off (Harrison, 2015). While this is possible it is not always the case.
This is why a more accurate model to predict kh value is useful.

In addition, this model can potentially be made even more useful by predicting surface shape
after a shock instead of just kh value. By replacing the k and h input and output by a number of
points on the initial surface. This was our original plan for this model, however we ran into one
issue when initially considering it. If the surface was known to always be describable as a single
valued function then it could be passed into and out of the model as a set of heights on a fixed
one dimensional grid, however, if the surface does not have to be a single valued function it is
important to first come up with a consistent description of the surface that takes this into account.
If this issue can be overcome then we see no reason that a model predicting surface shape would
not work.

(a) (b)

Figure 12.8: Two figures showing kh evolution data, in blue, from two of our single shock simula-
tions which our model was not trained on. The models prediction for kh vs. time is shown in read
in each of the plots.
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Figure 12.9: Percent error of our kh evolution model. The error along the ejecta/no ejecta boundary
is larger than most other places, so it may improve the model to include more simulations here.

12.3.3 Emulator 3: Total Mass Ejected

Processing

An emulator to predict the total mass ejected depending on the conditions of the shock and the
surface is quite useful since that is something regularly measured in experiments. The emulator
can be created through a supervised learning project, which we attempted to create. The model
we created predicts the evolution of the integrated mass ejected from the material as a function of
time and distance in the shock direction. This used a regression method similar to the method used
in the kh evolution project. This network took in the simulation inputs as well as the time and a
distance at which the integrated mass ejected past that distance was measured. All of these values
were then written to a separate text file for easier processing later.

In order to accomplish this we had to identify where the ejecta was. This was done through
graphing the integrated mass versus distance in the shock direction and finding the numerical
second derivative of the curve. As long as this is a simulation that produces ejecta and the time
it is measured at is past the time the shock hits the surface this works fairly accurately. Looking
at figure 12.10 we can see that the red dot is the location of the second derivative and every point
after that is ejected material.

Similar to the kh evolution project, our split between training and test data was not just split
between simulations, one data point was from a single timestep and distance with this method.
In order to simplify the data given to the NN we offset the first distance parameter to zero at the
beginning of the timestep, the rest of the distance points are offset by that same number for that
timestep. When the mass value was given to the NN it was given as the log(mass) and this prevents
the NN from giving us a negative mass value which is not physical and it also helps the NN be
accurate for smaller values of the mass as well as the larger values of mass. Since some of our
values for mass are quite close to zero this is especially useful. The mass value is also normalized
for the width/wavelength of the perturbation on the surface, so that wider surfaces have the same
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Figure 12.10: Isolating ejecta data at time = 0.65µs. Example of what is done at each timesteps,
all the data points to the right of the red dot are considered ejecta. The red point is the point of the
maximum second derivative.

importance weight as less wide surfaces. To run this though points of zero mass were converted to
a singular value float that was close to zero.

It can be seen that we used the mass versus the distance to process the data where as we used
the mass versus time to compare the data. This was done because of a decision early in the process
of this project, however identifying the ejecta through the mass versus time graph could be done in
a similar manner to the one we accomplished, but far more effective when comparing the results.

Our calculation of the time of which the shock hits the surface is not as accurate as another
method we found later in the process which was finding the time at which the minimum of the kh
value exists, which can be seen in figure 12.8. Implementing this feature in the future would help
the ejecta finder.

This was the most complex problem we attempted to predict with supervised learning. More
accurate predictions could be obtained by reducing this complexity. One way to do this would
be to identify the surface and take the total integrated mass ejected at the distance right after the
surface and at each timestep.

One thing that we did not attempt because of the difficulty implementing was giving the model
the log of the derivative of the mass with respect to distance, as that would have prevented the total
mass from ever rising in value at a later distance values which is unphysical.

Results

Previously when not using the log of the mass the model would predict negative mass values
when close to zero mass. Using the log of the mass improved the model greatly. Using the mass
normalized to width did not help the model as much as the when it just used the mass. Looking
at figure 12.11 which shows the modeled ejecta mass region, we can see that the model fairly
accurately measures the total ejected mass. The complexity involved is somewhat modeled with
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the current model. It has the general shape and for low masses is fairly accurate.

(a) (b)

Figure 12.11: Trained model’s fit on data not trained on. Tally surface set at 0.20 cm. Fits much
better on regions of less mass rather than regions of more mass. The model fairly reproduces the
times and distances that do not produce any ejecta.

Looking at figure 12.12 we can see that the error is highest at high kh and velocities. Adding
more points at higher kh and velocities would be helpful, but also looking at different NN regres-
sion methods could solve this.

Figure 12.12: Percent Error plot where the color corresponds to the percent error. Error is highest
at higher kh and velocities as the NN model ovestimates the mass value in those regions.
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12.4 Conclusion
We have used multiple machine learning techniques to analyze and predict multiple aspects of
ejecta physics. All of these models work and some of them could be of use almost immediately.
We have also outlined how to improve each of these models.

Unsupervised methods have the potential to aid in revealing connections in the data which are
not obvious. With emulation methods there is potential for simple questions to be answered with
out the need to run high fidelity and high resolution simulations.
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